
NASA Contractor Report 181759

Study of A Unified .Hardware and SoftwareFault Tolerant Architecture

(_A5A-CR-1E1759) .cI[UJDI OF t _1_1_2_r.

ll_Ctil_EC]Ulil_]Pica] liel[ort It[aFt[lCha_les

_ta_k) LoL.) 67 [_ CSCL 09B
,k

i (;3/62

Jaynarayan Lala
Linda Alger
Steven Friend
Gregory Greeley

Stephen Sacco
Stnart Adams

N89-1_CC3

Unclas
0183_10

THE CHARLES STARK DRAPER LABORATORY, INC.

CAMBRIDGE, MA O2139

Contract NASI.18061

January 1989

N;tSA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(

t

ii

TABLE OF CONTENTS

Section Page

LIST OF ILLUSTRATIONS ... v

1.0 INTRODUCTION ... 1

2.0 FAULT TOLERANT PR_R-ATrACHED PROCESSOR

ARCI[H'EC'rURE ... 5

2.1 Design Diversity Based Architectures .. .5
2.2 CSDL FTP/AP Architecture .. 7

2.3 Architecture Solutka_ to N.Version Progranuning 11

3.0 MARKOV MODEL FOR FYP/AP HARDWARE AND SOFTWARE FAILURES. 17

3.1 Markov Model for a Quad Fault Tolerant Processor Random Hardware
Failures 17

oooe.ooeoet .e.eeeoeoeeeoeo*oooe.oe*eeoooe .e.o .e oaaaeee.. • .0. .0

3.2 Markov Model for Software Failures in a Multi-Version System 21

3.2.1 A Theory on Software Failures .. 21

3.2.2 Modeling Multiple Programs ... 22

3.2.3 A Markov Model for FI'P/AP Reliability 24

4.0 RESULT RESOLUTION 29

4.1 FTP/AP Precision Voter .. 29

4.1.1 Difference Function 30

4.1.2 Ordering and Placement .. 32
4.1.3 _ Implemmtalion .. 34

4.2 Hardware/Software Isolation .. 34

4.2.1 Isolation Algorithm .. 35
4.2.2 Software Faults .. 36

5.0 THE
5.1

5.2

5.3

D_ON ALGORITHM ... 37
The Confidence Voter ... 39

The N-Version Simulator ... 39

The.Simulation Results ... 40

6.0 EXPERIMENTS ... 43

6.1 System Operation .. 43

6.2 Verification ofFTP/AP FTSW Fault IsoLation Algorithm 45

6.2.1 Objective .. 45

6.2.2 Experim_ Operation ... 45

6.2.3 Summary of Results .. 48

6.2.4 Conclusions .. 54

iii

6.3 Fauk__ ...• s4
6.3.1 Objective ... '54

6.3.2 Descripti_ ...• ... 54

6.3.3 Results .. 55

6.4 Perfm'nmm_ Mama'emmts .. 59

6.4.1 Objective .. 59

6.4.2 Description ... 59

6.4.3 Summary of Results .. 61

6.4.4 C(mdusions .. 62

7.0 CONCLUSIONS .. , 63

8.0 REFERENCES ... 65

iv

1.0 INTRODUCTION

During the last two decades, a great deal of progress has been made in the develop-

ment of fault tolerance techniques that improve the ability of computer systems to cope with

hardware component failures. Hardware fault tolerance is now a relatively mature

technology with the development of such computers as the FTMP, SIFT, FTP [1, 2, 3, 4]

and several other fault tolerant flight control computers. By comparison, designers of

mission and life critical systems, with few exceptions, still strive to develop perfect or

error-free software, with fault avoidance rather than fault tolerance the prevalent approach.

Error-free software, if it is possible to produce it at all, is a necessary but not a sufficient

condition for many critical applications. It is also necessary to formally certify the

correctness and error-free nature of the system. The state-of-the-art in validating and

verifying software and hardware cannot guarantee that the operation of a system of any

practical size will be error-free, or even that a probabilistic bound will be attained.

Historically, 50% of the software failures that occur in avionics systems take place

during the operational phase of the system's life cycle [5]. One has to assume that, given

the increasing complexity of future aerospace applications, these systems will, in fact,

contain latent software faults and that software fault tolerance will be necessary in order to

prevent system failure for these missions. Software entities are even more complex than

the computer hardware and possess orders-of-magnitude more states. Additionally, it is

our contention that for real-time flight crucial applications in aerospace vehicles there are

several unique requirements and conditions that contribute to increased software

complexity. These include management of hardware redundancy, real-time response

constraints and almost always a new and unique computer hardware architecture and a new

and unique operating system software for each new application. All of these factors

combine to dilute and weaken the traditional software validation and verification

techniques. As a result, the probability of achieving error-free software for flight crucial

applications is highly diminished. The only solution, for flight crucial applications and

other systems where human safety is at stake, is to detect software errors during system

operation and take corrective measures in real time so that execution of critical functions is

not interrupted.

Avizienis proposed N-version software [6] as a technique to detect and recover

from software errors as a more specific form of redundant programming put forward earlier

by Elmendorf in 1972 [7]. However, several practical problems have been encountered in

the implementation of the N-version software. One problem, observed fairly widely, is the

prevalence of correlated errors among independently coded versions [8, 9]. A second

major problem, in our opinion, is the manner in which N-version software has been

implemented in the hardware architecture. It is our contention that these implementations

have actually reduced the overall system reliability by weakening the architecture's ability to

withstand hardware malfunctions. One of the goals of this project was to produce a unified

architectural approach that extends a well known hardware fault tolerant concept to provide

for software fault tolerance without violating the fundamental hardware fault tolerance

design principles and provides a possible solution to the problem of correlated software

errors.

The real time applications of digital computers where human safety is at stake

require ultrahigh system reliability. This includes an ability to tolerate hardware failures as

well as software errors. The research and development of the past two decades has

established a firm theoretical foundation for hardware fault tolerance. The problem is how

to extend these proven hardware fault tolerant architectures to tolerate software errors and

to continue to perform the intended application function correctly in the presence of

hardware and/or software malfunctions. The extensions to the architecture should be such

that the proven aspects of the architecture that are crucial for high coverage of hardware

faults are not compromised. The fundamental theoretical requirements for hardware fault

tolerance should not be violated by any architectural features that are added for software

fault tolerance. The added overheads of software fault tolerance should not be so high as to

make the architectm'e unsuitable for practical applications. The architecture should not

compromise the performance to the point of making the system unfit for real time

applications with time critical response requirements. Afmr the overheads of hardware and

software fault tolerance are taken into account enough throughput should be available to

perform the application computation in real time with adequate response time to external

events and sufficiently small transport lag between inputs and outputs.

Finally, for most advanced applications, it will not be sufficient simply to detect

software errors and initiate a fail-safe shutdown of the computer system. For a digital fly-

by-wire flight control application, for example, shutting down the computer is tantamount

to a loss of the vehicle if there is no backup. Similarly, for totally autonomous vehicles,

highly automated manned vehicles, or remotely operated sites, it may not be possible to

provkle a suitable backup for the computer system. In these applications it is necessary to

identify the source of the failure (hardware module or software entity), isolate it from the

rest of the system, and provide a recovery mechanism so that the application function may

continue to be executed correctly and with no interruption. Advanced applications,

therefore, will require the computer systems to be fall-operational rather than just fail-safe.

The proposed Fault Tolerant Processor/Attached Processor architecture has been

developed by C-SDL in order to unify the treatment of hardware failures and software errors

and at the same time meet the NASA requirements for real time aerospace applications.

This architecture concept differs fundamentally from most other approaches for unifying

hardware and software fault tolerance. There were four major goals of this project: (1) to

develop this architecture to solve the problems of implementing N-version software, such

that hardware fault tolerance or performance is not compromised, (2) to solve the problems

of correlated errors among independently coded versions, (3) to isolate the source of the

failure between hardware and software, and (4) to provide a recovery mechanism. Other

goals of the study included the investigation of the suitability of the FTP/AP architecture for

2

N-versionsoftwareusingan actual application, providing a testbed for future fault tolerant

software experiments and relating the results to the Advanced Information Processing

System (AIPS) and extending the results to other architectures.

A quadruply redundant core FTP together with the interfaces to four Attached Pro-

cessors was designed and fabricated by Draper Laboratory and delivered to the NASA

Langley Research Center AIRLAB as a proof-of-concept of the FTP-AP architecture and to

be used for this study. It has been configured in the AIRLAB as shown in Figure 2. Four

VAX-11/750 computers in the AIRAB are being utilized to emulate the Attached

Processors. The Attached Processors execute four versions of the yaw damper, a critical

part of a commercial transport aircraft's flight control system. Two of the versions are

coded in Fortran, one in C, and one has been coded in Ada by an Computer Aided

Software Engineering (CASE) tool. A fifth VAX, called the Host VAX, simulates the

aircraft dynamics, provides simulated sensor inputs to the FTP, and accepts actuator

commands from the ZIP. The FTP passes the sensor information to the attached VAX

computers, schedules the yaw damper control law, votes on their actuator commands and

passes the voted actuator command back to the aircraft simulation in the Host VAX.

Section 2 is a discussion of the Fault Tolerant Processor/Attached Processor

Architecture. Section 3 discusses the reliability, maintainability and availability (RMA)

analysis of the quad CSDL FTP/AP hardware and a new method of modeling multiple

software failures that is the result of investigating the underlying failure mechanism, not

just the symptoms of the failures. Section 4 is a discussion of the hardware/software

isolation algorithms and Section 5 explains the decision algorithm used in the system to

solve the problem of correlated software errors and the results of simulations run with the

algorithm. Several experiments were conducted to validate the isolation algorithm and its

implementation and to measure the real time performance of the system. Section 6 is a

discussion of those experiments. Finally, Section 7 concludes with a summary of results

and suggestions for future work with the testbed.

3

4

2.0 FAULT TOLERANT PROCEKSOR- ATrACHED PROCESSOR ARCHITECTURE

This section presents a detailed description of the CSDL FTP/AP architecture which

is a unified approach to hardware and software fault tolerance. Subsection 2.1 is a

description of other architectures that have been designed in the past in order to unify

hardware and software fault tolerance. The approach of these architectures is

fundamentally different from the CSDL approach. Subsection 2.2 is a detailed description

of the CSDL FTP/AP architecture and Subsection 2.3 is a discussion of the FTP/AP

solutions to many of the problems with the N-version programming technique.

2.1 Present Design Diversity Based Architectures

The architectures that have have been proposed or employed in actual applications

to date do not meet all of the conditions discussed in Section 1 that are necessary for

advanced applications requiring ultrahigh system retiability. These include operational

systems such as the SP-300 digital autopilot/flight director (category IIIa) for the Boeing

737-300 commercial transport aircraft [10], the slat and flap control system for the Airbus

A310 aircraft [11, 12] and the newer systems about to enter service such as the digital fly-

by-wire flight control system for the Airbus A320.

Generally, these designs are all based on the principles of design diversity.

Typically, the hardware as well as the software in redundant channels is dissimilar in

specification, design, and execution. The microprocessors in redundant channels have

different Instruction Set Architectures (ISAs), are manufactured by different vendors, and

execute software that has been designed, developed, and tested by independent teams.

The rationale behind these architectures is the principle of design diversity. By

using independent designs, it is argued, the redundant channels would not exhibit common

mode failures. A microcode error in an instruction of a microprocessor, for example,

would result in the failure of only one channel while the other channel(s) would continue to

operate correctly since they do not use the same microprocessor design. Similarly, an error

in software in one channel, whether due to incorrect coding or a misinterpretation of

specifications, would result in an incorrect output only from that channel while other

redundant channel(s)continue to produce correct output. These arguments have been

successfully used in certifying the aforementioned _systems and others for safety critical

applications where required probability of certain system failure modes such as an

uncommanded surface movement is 10 -9 per flight hour or less [10, 11].

However, these architectures do not address all the issues and requirements

outlined earlier in Section 1. In particular, they have three significant shortcomings. They

are designed to be fall-safe and can not be extended to fall-operational applications. (One

exception is the A320 system which is designed to be fail-op, fail-op.) They provide

protection against common mode failures at the expense of weakening the protection

5

against random hardware component failures. Finally, even the protection against common

mode failures is of a questionable degree since design diversity can not guarantee a total

elimination of coincident errors [8]. (Coincident errors are defined as errors manifested by

redundant channels in the form of incorrect outputs when excited by the same input

whether or not the erroneous outputs are exactly the same.)

The primary reason for the shortcomings of these architectures is the approach to

redundancy management. The redundant channel outputs are compared to detect presence

of a hardware fault or a software error. If the outputs disagree by more than a certain

threshold, a shutdown of the computer, which is typically dual redundant, is initiated. If

another pair of channels is available, such as in dual-dual systems, control is transferred to

the operational pair. Sometimes the output disagreement between two computers must

exceed the threshold for a certain t/me interval before a failure is declared. Additionally,

the disagreement threshold may depend on flight conditions and on the specific output

variables being compared, among other things. When such a failure is indicated, the cause

or the location of the failure is quite uncertain. It could be hardware or software and it

could be in either channel In fact, under some conditions the threshold may be exceeded

quite legitimately because of sensor skew in redundant channels, thus causing a false alarm

[131.

Without further isolation procedures, the only option in many systems is to

permanently disable a pair of computers and their associated software which typically

means losing two dissimilar hardware channels and two versions of applications code

because one of these four entities failed. Furthermore, such a significant loss of resources

may actually be caused by a false alarm or a temporary event such as a single event upset, a

hardware transient or the passage of the applications code through an error sensitive input

space.

In order to manage the redundancy intelligently, then, it is absolutely crucial that the

cause of the disagreement be isolated to not only one of the four entities (two hardware

channels and two software versions) but also whether or not the failure is transient,

intermittent, or permanent. The fault isolation procedure typically invoked in the

architectures under consideration is the execution of predetermined self tests. The coverage

of self tests in uncovering hardware faults is notoriously low. In any ease, they are quite

useless in resolying the hardware-software isolation problem unless the hardware happens

to fail permanently. A majority of the hardware failures, from 60 to 80 percent, are known

to be not permanent [29]. Given the low self test coverage and the propensity of hardware

for transients, the likelihood of isolating the cause of the failure correctly in real time in

such systems is orders of magnitude lower than would be required to meet the 10 -9 failure

per hour criterion after system reconfiguration. The only certain means of providing the

fail-operational capability with the requisite reliability, then, is to discard the redundant

hardware pair, and its associated two software versions, at the slightest hint of trouble.

Unfortunately, such a strategy could result in a quick loss of resources, depending on the

6

transient failure rates. For example, in a dual-dual system two transients, one in each pair,

could cause a total system shutdown.

The same hardware and software resources as used in these architectures can be

configured and managed in a different way to yield ultrahigh reliable systems that meet the

real time application requirements outlined earlier.

2.2 CSDL ZI'P/AP Ardlitecture

The proposed architeetta'e consists of a Byzantine resilient hard core Fault Tolerant

Processor (FTP) which meets the fundamental theoretical requirements for fault tolerance

[3,14]. To each redundant channel of the FTP is attached an application processor (AP)

which is nonredundant. The core FTP may be duplex, triplex, or quadruply redundant

depending on the reliability requirements and fail-safe, fail-operational or 2-fail-operational

considerations of the application. A minimum of at least a triplex configuration is

recommended for reasons to be discussed later. The quadruplex configuration of the FTP-

AP architectta_ that has been used in this study is shown in Figures 1 and 2. The core FTP

is responsible for I/O management, assignment of application functions to attached

processors, and hardware and software redundancy management. The attached processors

are responsible for executing the applications software. This architectm'e allows for design

diversity in hardware and software and at the same time meets the real time applications

requirements discussed in Section 1. This is achieved by the unique approach to

redundancy management.

As described in greater detail in [3,14], the core Fault Tolerant Processor

architecture is designed such that the outputs of all redundant channels are always in bit-

for-bit exact agreement when there are no faults and the outputs of all correctly operating

channels are in exact agreement in the presence of a predefined number of arbitrarily

malicious or Byzantine faults. The theoretical requirements necessary to guarantee this

behavior earl be summarized as follows. In order to tolerate f simultaneous Byzantine

faults, it is necessary to have 3f+l independent fault containment regions which are

connected by 2f+l disjoint paths and which go through f+l rounds of information

exchange to arrive at exact consensus [15, 16, 17]. Furthermore, if the skew between

redundant channels is bounded, then a bit-for-bit comparison and voting of channel

outputs, after waiting for maximum time skew, indicates unambiguously if there is a failure

as well as the source of the failure. (This is the reason for recommending at least a triplex

level of redundancy for the FTP which can tolerate one Byzantine fault and still continue to

operate correctly). The core FTP redundant channels execute identical software on identical

hardware. The core FTP software consists of a hardened operating system kernel,

redundancy management, and input/output management software [18]. Thus, it is very

small in size and application independent and need not change with every new application

All the traditional validation and verification techniques can be applied to this kernel. The

kernel software may also be small enough to be formally verified when mature formal

7

software verification techniques became available. The same is true of the core FTP

hardware. Since the requirements of the functions being executed by the core FTP are not

complex, a simple RISC microprocessor that has been formaUy verified [19] can be utilized

to minimize the risk of a common mode processor failure. In the unlikely event of a

common mode failurein the core FTP, eitherhardware or software kernel, several

detectionand recovery mechanisms areprovided [18]. Them includehardware watchdog

timers, software timeouts, hardware and software exception handlers, total system restart,

etc.

COREFTP APPUCA TIONS
PROCESSORS

i _ _

I PROCESSOR AP D

INTERCHANNEL
CC_MUNICATOR

CHANNEL C

PROCESSOR

II_.__FtCHANNEL

|

F,-,R ConlaJnme_t Region

CHANNEL B

PROCESSOR

Fault Containment Region

AP C

Fault Containment Region
!

Fault

t

INTERCHANNEL
COMMUNICATOR _Fsult Containment Region

CHANNEL A

i PROCESSOR

COMMUNICATOR

Fault Coeminment Re_on.
t

AP A i

I

Figure L FT'P/APHardware Arddteclure

Since the redundant channels of the core FTP execute identicalsoftware, on

identicalhard@arc, with identicalinputs,any disa_'eement of a singlechannel with the

majorityisan indicationof a random hardware failure.This failure,of course,needs tobe

further categorized as permanent, intermittent, or transient such as one that might be caused

by a single event upset (SEU). Restarting the failed channel after restoring its internal state

from other operating channels indicates whether or not the fault, or at least its manifestation

in the form of an erroneous output, is permanent. If the channel can be restarted

successfully, it is brought back in operation. However, it is assigned a demerit in its

dynamic health variable. This variable is used to differentiate between transient and

8

intermittent failures. There is also a background memory scrub program that routinely

compares memory contents of redundant channels, thereby exposing any bit flips caused

by single event upsets. If an SEU causes a more insidious problem than a bit flip such as a

change in processor control flow, then that failure would show up as a transient since the

affected processor would disagree with others until it is reinitialized and restarted.

The core FTP architecture has served well in numerous applications [4] by

demonstrating an extremely high coverage of random hardware faults. By attaching

applications processors, it has been extended to provide a unified hardware-software fault

tolerant architecture. Each application processor communicates with only one channel of

the core FTP. However, all the redundant channels of the core FTP congruently decide the

worldoad for each of the applications processors. This extension of the architecture is used

to provide design diversity and protection against common mode failures. It is the

applications area which is new and different for each new application and therefore most

likely to contain design errors. The attached processor hardware and software redundancy

is managed by the core FTP as follows.

The configurationused for the study and experiments was one in which the core

FTP isquadruply redundant and each FTP channel has an attachedprocessor,although

such a rich hardware configuration is not necessary for all applications. In this

configuration,each AP isassigned to execute a differentversionof the applicationcode

such as the flightcontrolprogram for a commercial transport.At the beginning of each

iteration of the control law, the FTP reads aU the sensors and distributes an identical copy

to each AP. At the end of each iteration, the results from each AP are obtained by the FTP

and intemaUy distributed to all redundant channels so that each FTP channel has all four

results. The four results are then compared to determine if there is a disagreement.

Because of dissimilar software, these results are not expected to be bit-for-bit identical.

However, it should be emphasized here that the approximate equality in this case is solely

due to differences in the mechanization of the control law specification and not due to

sensor skew. (Furthermore, the AP's have virtually no effect on the detection and isolation

of internal FTP failures because the outputs of APs are not used to detect core FTP

failures.) If one of the AP results disagrees with the majority by more than the accuracy

described in their common specification, an isolation procedure is invoked to determine if

the error was due to hardware or software. The details of the hardware/software isolation

algorithm are described in Section 4. An outline of_e isolation algorithm is as follows.

The iterationof the softwareversioninquestionisrerun on allAPs using inputsfor

the previous iterationand afterrestoringthe internalstatusof the software version to its

previous state. A bit-for-bitmajority vote of the three APs, which are not suspects,

provides the suspect software version'soutput for thatiterationwith hardware faults

masked. Any differencein thisvoted response and thatof the suspectAP isattributedtoa

hardware faultin the suspect AP. The algorithm compares the originalresultfrom the

suspect AP with the voted result of the non suspect APs and with the result of the isolation

9

iteration of the suspect AP. The algorithm detects both transient and hard faults in the

suspect AP. It also determines ff the fault was caused by a software error (or a common

mode hardware fault which is treated as a software error). The algorithm identifies a hard

hardware fault ff the results of both iterations in the suspect AP disagree with the voted

result from the non suspect APs. The algorithm identifies the fault as a transient hardware

fault, if the original iteration of the suspect AP disagrees with the voted result from the non

suspect APs, but the result from the isolation iteration of the suspect AP is the same as that

of the voted result from the non suspect APs. The fault is identified as due to the software

version, ff the original result from the suspect AP agrees with the voted result from the non

suspect APs, but does not agree (within the specified accuracy) with the original results

from the other software versions. The algorithm also identifies that there is both a

hardware fault in the AP and a software error in the version, ff the result of the suspect AP

disagrees with the voted result of the non suspect APs and the voted result of the APs,

running the suspect version, disagrees (within the specified accuracy) with the results of

the original iteration for the other software versions.

Ifthe malfunction was caused by the software version executing in the AP, the

confidence voter isinvoked. The confidence voterkeeps a historyof erroroccurrencesin

allsoftware versions. Ituses thisinformation to resolve those cases where multiple

softwareversionsmalfunction simultaneously,causing coincidenceerrors.As mentioned

earlier,coincidenceerrorshave been found to be one of the stumbling blocksinimproving

software reliability through N-version coding. The confidence voter principles of operation

and some simulation results indicating its effectiveness in tolerating coincidence errors are

describedingreaterdetailinSection5.

Three important comparisons of the FTP-AP architecture with other design

diversity based architectures are in order. The hardware content of the quad redundant

FTP-AP is of the order of eight processors with some interprocessor communication

hardware which is just a few custom designed chips. This architecture provides a full fall-

op, fail-safe capability. The FTP-AP hardware is thus comparable in size and complexity

to other architectures that provide similar capability [I0, 30].

A major difference between the FTP-AP and other design-diversity-based

architecturesis the degree of consensus between outputs of redundant channels. Many

design-diversily-based architecturesare designed as asynchronous systems. The

asynchronous approach involves execution of the versions of the applicationwithout

imposing any synchronizationconstraintson the redundant channels. The fastlag-time

requirementstypicalof controlapplicationsnecessitatethattheasynchronous versionsmust

use thelatestsensorvaluesavailable.Thus, the differentversionsareoftenexecutingwith

significantdifferencesin theirinput values used. Occasionally thiscan even extend to

versions executing under widely differingassumptions of mission phases or under

I0

differing application dynamics. To counteract these effects, the thresholds used to detect

and isolate faults must be set very wide.

By contrast, the dissimilar versions on the FTP-AP architecture execute in parallel

using bit-for-bit identical inputs guaranteed by source congruency. The outputs of the

versions executing on the APs are not expected to be bit-for-bit identical, and a fault is

signaUed only when outputs disagree by more than the accuracy required by their common

specification. However, since the disagreement threshold does not have to allow for

sensor skews or differing mission phases or application dynamics between versions, the

FTP-AP provides more sensitive fault detection than would be possible in an asynchronous

system. Furthermore, once a fault has been detected, the isolation algorithm does require a

bit-for-bit consensus between AP outputs as explained in the Fault Isolation section of

Chapter 4. The core FTP and possibly some applications on the APs are not executing

dissimilar versions, thus exact consensus is required between outputs of redundant

channels, providing very sensitive fault detection and identification.

2.3 Architecture Solutions To N-Version Programming

Past work in fault tolerant software has uncovered several issues and problems with

the N-version programming technique. Among the issues noted by Avizienis [21] were the

assurance of input consistency, interversion communication, protection of the support

environment, version synchronization, meeting real time constraints, recovery of failed

versions and the decision algorithm.

The FTP/AP architecture guarantees input consistency with the core FTP data

exchange hardware. Inputs such as sensor values that need to be distributed to all versions

are obtained by the core FTP. Assume, for example, that Channel A of the FTP is

connected to a sensor. After reading the sensor, Channel A broadcasts the value to the

other three channels of the FTP using the Byzantine-resilient, two-phase exchange

illustrated in Figures 3a and 3b. At the end of this exchange, each operating channel in the

FTP has an identical value of the sensor even in the presence of a Byzantine Fault [14].

The four channels then distribute this value to their respective attached processors.

11

CORE FTP

CHANNEL D

• HARDENEDOPERATING
SYSTEMKERNEL

•REDUNDANCY
MANAGEM_

APPLICATIONS
PROCESSORS

Right
Control

(Version4)

CHANNEL C

• HARDENEDOPERATING
SYSTEMKERNEL

• REDUNDANCY
MANAGEMENT

CHANNEL B

• HARDENEDOPERATING
SYSTEMKERNEL

• REDUNDANCY
MANAGEMENT

AP D

Fight
Control

(Version3)

AP C

Flight
Control

(Version2)

AP B

AIRCRAFT
SIMULATION

HOST
VAX

CHANNEL A
• HARDENEDOPERATING

SYSTEMKERNEL

• REDUNDANCY
MANAGEMENT

• VOMANAGEMENT

Flight
Control

(Version1)

AP A

Figure 2. FTP/AP Software Architecture

12

CHANNEL A TRANSMITS

CHANNEL A

CHANNEL B

CHANNEL C

r

PROCESSOR

I,,oi
r

.__T_- --_ _r, .',Lv J
"1"............ _.........

CHANNEL D
_, _PROCESSOR' 1i, Z i

COMMUNICATOR IJ tl

t

|

I

Figure 3a. Byzantine Resilient Data Distribution From Channel A:

Phase I-Channel A to Interstages

13

ALL CHANNELS RECEIVE

f_'rn_A& 1
Figure 3b. Byzantine Resilient Data Distribution From Channel A:

Phase II-lnterstages to all Channels

14

Interversion communication in the traditional sense is not necessary in this system.

Each version runs with the set of sensor inputs and its internal state variables which are

saved by the FTP after each iteration. The code for all versions is resident on all APs but

only one version is executing on each AP. The inputs and internal state variables are given

to each version at the beginning of each iteration. This is necessary so that the FTP can

distribute versions among the APs for hardware/software isolation or other reasons.

Communication between the FTP and the versions is supported by the FTP/AP hardware

by means of a shared memory between each core FTP channel and its attached processor

and the FTP data exchange. All inputs to the APs are transmitted by the FFP via shared

memory. Outputs from the APs are received by their respective FTP channels and

distributed internally in the core FTP by means of the data exchange mechanism. The APs

are the slaves of the FTP such that the FTP controls all interversion communication.

Protection of the support environment is also one of the functions of the FTP/AP

architecture. Since each version is running on a physically separate processor that forms a

distinct fault containment region, the rest of the system will continue to operate even if one

of the APs experiences a hardware fault. Also, if a software error causes a version to abort

and destroy the operating system on one AP, the error will not propagate beyond that AP

and not affect the continued operation of the rest of the system. Several prior N-version

software experiments that used a single processor to execute multiple versions sequentially

found that failure of one version could cause failures of succeeding versions as well [9,

221.

The problem of version synchronization is solved by the FTP scheduling each

iteration of the four software versions. The FTP then waits a predetermined maximum time

and reads the outputs from the four versions which are running in parallel. If any of the

versions has not completed at the end of this period, it is declared failed and its output

masked out of the vote.

As a program travels through its input space, it will also travel through regions

where the input will cause the program to fail (see Figure 5). During the period that the

program is in this failure region, it will produce erroneous results. When it leaves this

region, the hope is that it will produce correct results if reinitialized to a correct state.

Therefore, when a version fails, it is possible to attempt recovery of the failed version. The

recovery method in the FTP/AP involves restoring the failed version to its initial state

followed by the continued execution of the failed version, with its output masked, but

comparing its output to the voted output. Reinitialization of a failed software version to a

state that is congruent with other versions is a difficult task [23]. Instead, the failed version

is initialized to a cold start state and allowed to bring itself to a congruent state over time by

open loop operation. The version is restored if its output agrees with the voted output for

several iterations.

15

16

3.0 MARKOV MODEL for FTP/AP HARDWARE and SOFTWARE

FAILURES

Markov models for both hardware and software failures of the quad Fault Tolerant

Processor/Attached Processors running four versions have been developed. Developing

thehardware model followed known techniquessincehardware failuremodels assume that

failuresare random, statisticallyindependent events with a constant hazard rate. Using

similarmodels forsoftwarefailureswas not feasiblesincesoftwarefailuremechanisms are

very differentfrom hardware failures.Software failuresare deterministicfunctionsof the

program's inputand state,and ithas been shown thatthe failuresof multipleversionsof a

program are not statisticallyindependent [24]. In creatinga Markov model for software

failuresof severalversionsrunning concurrently,a new techniquewas dcvclopcd. Section

3.1 istheresultof thehardware failureanalysisand Section 3.2discussesa new technique

formodeling softwarefailures.

Future work should include the development of a combined hardware/software

model for a complete reliabilityanalysisof the unifiedhardware and software FrP/AP

architecture. Hardware failurerates for a given amount of functionalitycontinue to

decrease as the microclectronicstechnology advances due to increasedintegrationlevels

and reduced number connectors[26,31]. The technology needed fora specificapplication

must be determined in ordertoderivethe specificfailureratesforthe hardware modcl. For

thesoftwaremodel no dataon failureratesof softwareispresentlyavailable.

3.1 Markov Model for a Quad Fault Tolerant Processor Random

Hardware Failures

A Markov model has been developed for the FTP both with and without repairs.

The state transitions of the model are based upon four rates: The rate of processors channel

failures, the rate of inter-stage failures, the repair rate for a processor channel or inter-stage

and the FTP fault recovery rate. The Markov model for the FTP with repairs is depicted in

Figure 4. The model for the FrP without repairs is identical to the depicted model except

that repair transitions are removed. Status S12 to S16 in the model are termed fail-safe

states for those applications where it is possible to downmode to such a state. Otherwise,

these five states would be combined with S 17, the catastrophic failure state.

PRI_CEDING PAGg [_LANK NOq' FILMI_

17

FTP M_rkov States

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

$11

$12

$13

$14

$15

$16

$17

No failures

1 interstage has failed - System recovering

1 intcrstage has failed - System recovered

I processor has failed - System recovering

1 processor has failed - System recovered

2 inter-stages have failed - System recovering

2 inter-stages have failed- System recovered

2 processors have failed - System recovering

2 _ssors have failed - System recovered

I inter-stage and I processor has failed - System recovering

1 inter-stage and i processor has failed - System recovered

3 inter-stages have failed - System recovering

2 inter-stages and 1 processor have failed - System recovering

1 inter-stage and 2 processors have failed - System recovering

3 processors have failed - System recovering

System failed safe

System catastrophic failure

18

FTP Markov State Transitions

From To

State State

1 2

1 4

2 3

4 5

3 1

5 1

2 17

4 17

3 6

3 10

11 3

7 3

5 8

5 10

9 5

6 7

8 9

10 1l

6 17

8 17

10 17

7 12

7 13

9 14

9 15

11 13

11 14

12 16

13 16

14 16

15 16

12 17

13 17

14 17

15 17

Reason

Inter-stage failure

Processor channel failure

Recovery from inter-stage failure

Recovery from processor failure

Repair of inter- stage

Repair of processor channel

Second failure whilerecovering

Second failurewhile recovering

Inter-stage failure

Processor channel failure

Repair of inter-stage

Repair of inter-stage

Processorchannel failure

Inter-stage failure

Repair of processor channel

Recovery from inter-stagefailure

Recovery from processorfailure

Recovery from failure

Faultduringrecovery

Faultduringrecovery

Faultduringrecovery

Inter-stagefailure

Processorchannel failure

Inter-stagefailure

Processor channel failure

Inter-stage failure

Processor channel failure

Recovered from failure - system failed safe

Recovered from failure - system failed safe

Recovered from failure - system failed safe

Recovered from failure - system failed safe

Fault during recovery

Fault during recovery

Fault during recovery

Fault during recovery

19

<

<

a_

Figure 4. Markov Model of Quad Fault Tolerant Processor

2O

3.2 Markov Model for Software Failures in a Multi-version System

The Markov model for multiple software failures developed at Draper represents a

four-version system (such as the FTP/AP) that uses the majority (or "plurality") vote to

resolve disagreements. The states in this model correspond to the types of errors the

system could encounter. Thus, for example, one of the states is equivalent to the condition

where two versions agree on one answer and the two other versions have two different

answers. (This ease is referred to as a 2:1:1 split.) As one can see, this model contains a

large number of transitions rates (_.p_.2,_.3,3.4,Xs,Xt,LT,pl, and P2)" All of these rates,

however, are given in terms of five parameters: _fr, _'ec' Pfr' Pec' and x. This section

attempts to determine a relationship between these transition rates by examining the

underlying failure process, rather than the visible errors, which are only symptoms of the

faults within the code.

3.2.1 A Theory on Software Failures

In their paper on software failures [24], Eckhardt and Lee contend that a program

has a distribution, 0 (x), which is a function of the input space of the program. Thus, if a

program has 3 inputs, then there exists a 3-dimensional input space, and each point in this

input space is assigned a probability 0 (x, y, z). This probability describes the "propensity

of a population of programmers to introduce design errors such that" the software will fail

on that input. Alternatively, one can think of the distribution as the probability that a

randomly selectedprogram willfailon thegiven input.

The point of this model is that software failure rates are explicitly linked to the input

space of the program. (Current research tends to validate this model [25].) Eckhardt also

notes that an N-version system with a pure majority vote 1 will be more reliable than its

single-version counterpart only if the intensity distribution is less than 0.5 throughout the

operational input space. In other words, if there is a region in the input space where the

probability that an arbitrarily chosen version will fail is greater than 0.5, then the N-version

system will be less reliable than the average single version.

G. Earle Migneanlt at NASA Langley Research Center introduced the idea of"dark

crystals" (which Knight calls error crystals). If one looks at a program's n-dimensional

input space, there would be certain regions where the input will cause the program to fail.

These regions are the program's error crystals. According to this theory, which applies

Eckhardt and Lee's model to an individual program, there is nothing random about

software failures. If the input to a program is inside an error crystal, then the program will

produce erroneous output. Otherwise, the code will produce the correct output. Recent

1In this case, "majority" is used in the strictest sense. A 4-versions system would require at least 3
versionstoagreeon ananswerbeforethatanswerwouldbeusedasthesystem'soutput.

21

work by Knight [25]has mapped some two dimensional slicesof errorcrystalsin versions

of his hunch interceptor application.

3.2.2 Modeling Multiple Programs

To model the operation of a program, we can think of a point traveling some path

through an n-dimensional input space. During its travel, the point will occasionally enter

and leave these error crystals. Figure 5 shows a 2-dimensionai slice of an input space.

Within this space there are two crystals, A and B, that overlap. Because these regions share

a large common boundary, an input following the path shown would experience a

simultaneous double failure, then two sequential recoveries. Unfortunately, there are some

complications with using this model.

INPUT X

Figure 5. Failure Regions of Four Versions for Input Space (x,y)

The first complication is that one cannot assume versions will fail independently.

Thus, if the probability of a single failure on a given iteration is a multiple of X, the

probability of two versions failing simultaneously is not necessarily a multiple of _.2.

The second complication is that sequential failures of different versions axe

probably not independent. That is, when one version is in a failed state, the probability that

the other versions will fail is likely to be higher. This view follows along with the theory

22

put forthby Eckhardt and Lee: versions tend to fail together. Given this theory, we would

like to take the more conservative view and say that the probability of a second version

encountering an error crystal, while the input point is already inside the first version's error

crystal, is higher than the probability of the first version encountering the original error

crystal.

Using Eckhardt and Lee's model, one can easily understand, then, the concept of

failure regions. The distribution of each version's error crystals may be uniform

throughout the input space, but the distribution of the error crystals from four versions

would definitely not be uniform. Thus, failure regions are areas of the input space where

these error crystals from the four versions collect. These are the inputs which test or

exercise special cases in programs, and it has been shown that programmers tend to make

mistakes when they encounter special cases [27]. Because we believe that error crystals

collect in certain areas, we will model the probability of failure for each version as

increasing while any version is inside an error crystal.

By using this concept of failure regions, we are able to model the various transition

rates with only a few parameters. First, however, we must make a critical assumption: the

failures of different versions inside a failure region are independent. By making this

assumption, we are saying that the dependencies among versions are due to the failure

regions. In fact, one can think of a failure region as the area of an input where the

specification for the program requires some type code which is more difficult to write. An

example of this would be an if or switch statement. The probability that one programmer

win write a faulty if statement is not affected by the other programmers' if statements. It

is the fact that all the programmers have to write an if statement that increases the

probability of each version failing on that input. Another example is a program that takes

three points as its input. There may be a special case when all three points rest on the same

line. Once the input is in a special case, which programs actuaUy make the mistake can be

treated as being independent; the dependency comes from the fact that all programs are in a

special case simultaneously.

For our model, then, we use two parameters to describe the transition rates into and

out of failure regions: _'fr and P_r" _'fx is the probability that the input point will enter a

failure region on a given iteration. P_r is the probability that the input point, which is in a

failure region, _ill exit that region. In an intuitive sense, _ controls the density of failure

regions within the input space while Pfr controls the average size of the regions.

After the input point has entered a failure region, we use the parameters _._: and Pec

to describe the transition rates into and out of error crystals. As with failure regions, _'ec

could be thought of as controlling the density of error crystals within the failure regions

while Pec controls the average size of each crystal. For continuous processes, such as an

23

aircraft's heading, we would expect the input point to travel through error crystals in a

linear fashion. For non-continuous processes, the input point will tend to "jump" through

the input space. The net result is that Pec reflects the average number of iterations the input

point is expected to stay inside an error crystal.

In the model, these parameters are combined to form the transition rates. For

example, the probability that the input point will enter at least one error crystal on its next

iterationis

Probability(enter failure region) x

Probability(enter error crystal I inside failure region) x

number of versions

or

),.b x 2Lecx 4

Note that using this model, the rate at which failures occur (given that you are not in

a failure region) is 4;Lec2Lfr, while the rate for double coincident failure is 6k2ec_rr. The

values of (42L=c;Lfr)2 and 6;L2ec_.fz are not necessarily equal, implying that the failures are

not independent. Also, the rate of additional failures (given that there is already a single

failure) is 37.ee. The fact that the input point has entered the failure region has changed the

probability that a single version will fail.

We also need to model the ratio of identical incorrect outputs versus non-identical

incorrect outputs for multiple software failures. To do this, we assume that once a version

has failed, it has a nearly infinite choice of different incorrect algorithms, each of which

returns a unique value as its output. We also assume that there is one algorithm that is

much more likely to be selected than any of the others. The probability of choosing this

one "popular" incorrect algorithm, given that the version has failed, is _r. The probability

of choosing one of the nearly infinite number of other incorrect algorithms is (1 - x)/n

(where n is the number of other incorrect algorithms). If both versions choose the popular

incorrect algorithm, then they will have identical incorrect answers. (This happens with

probability x2.) If either version (or both) choose any algorithm other than the popular

incorrect algorithm, they will never agree on an incorrect answer. Each individual

"unpopular" algorithm is considered so unlikely to be chosen that we assume that it will

never be chosen more than once.

3.2.3 A Markov Model for FrP/AP Reliability

Using the information from Eckhardt and Lee's paper, we model the software

failures of a 4-version system. As the four versions are running, we can imagine their

24

input point wandering in the programs' input space. Evenly distributed throughout this

space are failure regions. The input point enters these failure regions at a rate of _'fr and,

once in, exits at a rate of Pfr Once the input point enters a failure region, error crystals are

evenly distributed throughout the region. The input point enters these crystals at a rate of

. and, once in, exits at a rate of pf_.

Figure 6 shows the Markov model for software failures. All the transition rates for

this model are based on the five parameters previously discussed, _'fr, _'e_, Pfr' P_c' and 7r.

Thus, _'1' the failure rate for a single software module, is simply _._. (Both rates assume

that the input point is already inside a failure region.) The rate of dual coincident failures,

is _.2ec. These failures, however, must be divided into identical failures, which occur at the

rate _.,,, and unique failures, which occur at the rate L2. Of all the double failures, then, we

assume that 7r2 will be identical and the remaining (1 - ;r2) will be unique.

Triple failures occur at the rate _,3ee. These failure, however, must also be divided

into those failures with unique outputs (L3) and those failures where two or more outputs

agree (_'5)- The probability of all three outputs failing identically is g3. The probability of

any 2 (but only 2) outputs failing identically is 37r2(1 - 7r). Thus, the probability that two

or more outputs agree on an incorrect output is 31r2 - 27r3. As a result, the probability the

the three incorrect outputs are unique is simply 1 - (31r 2 - 27r3).

Quadruple failures occur at the rate _4. These failures are, again, divided into

two types: those with all unique outputs (k6), and those with 2 or more identical outputs

(2_7). (Note, however, that this model does not include a 2:2 split quadruple failure as a

possible outcome. This is because the identical incorrect answers are modeled by the one

"popular" incorrect answer. A quadruple failure that has two pairs of incorrect answers

implies that there are two "popular" incorrect answers.) The probability that all 4 answers

are identical is _.4; any 3 (but only 3) is 4_r3(1 - 7r); any 2 (but only 2) is 61r2(1 - 7r)2.

Combining all these figures, the probability that two or more incorrect answers will agree

is 6_r2 - 8_r3 + 3_ 4. The probability that all answers will be unique is just 1 minus that

number.

25

No

Failures

(3X3+ 4+ X6)

Fail
Safe

No 3;L5 + _.7
Error

Crystals 33.4+ Z5

Pt P2

phic
Failure

3:1 2:1:1

Split or 2:1
2px 3_ Split

Explanation of Symbols

_1 =

_'2 = ;L2(1 - _2)

_4 = _2

Z3 3= _,e¢ (1 - 3/¢ 2 + 2_)

;L5 _3.. 2= ec(-_g -2_ 3)

Failure Rate for Software Modules

Dual Coincident Error Rate CUnique Outputs)

Dual Coincident Error Rate (2 Identical Outputs)

Triple Coincident Error Rate (Unique Outputs)

Triple Coincident Error Rate (2 or 3 Identical Outputs)

Z6 = 3.4(1 - 61r2+ 8x 3 - 37r4) Quadruple CoinCident Error Rate (1:1:1:1 or 2:2 splits)

_'7 = k_c (61r2-893 +34) Quadruple Coincident Error Rate (>2 Identical Outputs)

P 1 = Pec Recovery Rate for Software Modules

P2 = 132 Dual Coincident Recovery l_mte

Figure 6. Markov Model for Multiple Software Failures

26

These rates, X1 through L 7, are used to create the transition rates between the states

of the model. Of the 6 states, only the state labeled "No Failures" corresponds to the point

being outside of a failure region. All transitions into this state, then, occur at the rate Pfr,

and the sum of all the transition rates out of this state must equal _.

Once the input point is inside a failure region, there are 5 different states it could be

in. Two of these are trapping states: the "Fail Safe" state occurs when there is no majority

of versions that agree on a correct answer;, the "Catastrophic Failure" state occurs when a

majority of versions agree on an incorrect answer. The remaining 3 states (which are not

trapping states) occur when a plurality of versions (2, 3, or 4) agree on a correct answer.

By investigating the underlying process that causes what we are trying to model,

we are able to create a Markov model that reflects the software failure mechanism, which is

significantly different from the hardware failure mechanism. While hardware failures are

random, statistically independent events, software failures are not, and they should be

modeled in a different fashion. This model treats software failures as deterministic

functions of the software's input and it links failures between versions via common failure

regions.

Another advantage to this model is that it uses a small number of unrelated

parameters to define the transition rates between states. These parameters directly represent

those quantities we are interested in: the size and density of failure regions, the size and

density of error crystals, and the probability that two failed versions will choose an

identical incorrect answer. This model also allows a wide range of parameters to be used.

For example, we could represent the entire input space as a failure region by setting Xfr = 1

and Pfr = 0. We could also treat all multiple failures as identical by setting g = 1. This

flexibility, combined with the ability to directly control the important parameters are

additional advantages of this model.

°

27

28

4.0 RESULT RESOLUTION

Execution of N-version fault tolerant software on the FTP/AP requires the

resolution of a set of results to a single, correct value. Each result of the set is associated

with a version of the specified function and the attached processor used to execute that

version. The detection of incorrect results requires that the set of results be compared and

voted. The correct result is defined to be the majority result and a disagreeing result is

caused by either a fault in the associated version or a fault in the associated attached

processor. (No attempt is made to isolate faults between the attached processor hardware

and the attached processor executive. They are collectively termed the attached processor.)

Masking of subsequent results from the suspect components until the fault has either been

repaired or been judged transient is necessary to maintain the fault tolerance of the system.

The compilation of component fault statistics and the minimization of resource loss due to

masking requirestheisolationof faultstoeithertheattachedprocessoror theversion.

The comparison and voting of results from design diverse software necessitates the

use of a precision voter. Correct results from the associated versions are only required to

be equivalent within the accuracy described in their common specification; the bit for bit

congruence of correct results is not guaranteed as it is in non-diverse fault tolerant

implementations. The precision voter implemented on the FTP/AP fault tolerant software

system is described in Section 4.1.

After evaluation by the precision voter, disagreements in the set of results returned
from the execution of each version are the result of either faults within the versions or faults

within the associated attached processor. Isolation of the fault to either origin requires the

re-execution of the suspect version and evaluation of these isolation results based on the

behavior of hardware and software faults. The hardware/software (or AP/version)

isolation algorithm and the constraints placed on fault behavior are described in Section
4.2.

4.1 zrP/AP Precision Voter

Results from the versions associatedwith an implementation of design diverse

software are only required to agree within the accuracy described in theircommon

specification.A bitforbitcongruence comparison isno longera validequivalencetestof

the results.Instead,some differencefunction which testsagainstthe specifiedaccuracy

must be used. This differencedelineatesan equivalenceintervalwhich must be overlaidon

the values representedby the setof results.The placement of thisintervalshould be

chosen tomaximize thenumber of equivalentresults,to minimize the number ofpairwise

resultsplits,and to minimize the amount of hardware/software faultisolationrequired.

These issueswillbc discussedin thefollowingsections.

PRI_I3EDINO PAGE BLANK NOq' i;'ILM_D

29

i_L.__lWl.4Ef_l_pl_.ly IMttAN'Y_

4.1.1 Difference Function

The result returned by the yawdamp function of the installed autoland simulation is

a floating point value with an accuracy specified as +/- 1E-3 of the allowed range. This

corresponds to an absolute accuracy +/- 5E-2 degrees. The precision of the floating point

representation used in the multiple versions of the yawdamp function is on the order of +/-

5E-7. A difference functiOn which tests against twice the absolute accuracy, i.e. a

difference of 1E-1 degrees, is necessary to determine the equivalence of these values.

The simplest implementation of the difference function would use the floating point

representations directly. This would require either the expense of using a floating point co-

processor or the overhead attendant in floating point emulation. An alternative is to convert

the floating point representation into a fixed point representation and perform the

comparison on the corresponding integer values. This removes the requirement of

performing floating point operations and the comparison could possibly be implemented in

hardware. In the FTP/AP system the difference function was implemented using a

software comparison of fixed point values.

In the fixed point representation selected, the value represented is described by two

integer quantities, the mantissa and the exponent, such that the value is equivalent to

mantissa * 2exp onent

If the mantissa was an infinitely precise real value then the above representation would also

have infinite precision, instead the mantissa is constrained to be an integer value and the

precision of the representation is determined by the value of the exponent. In the

conversion from floating point to fixed point the integer mantissa is the result of mmcating

the appropriately shifted fractional portion of the floating point representation. Relative to

the values representable in the floating point format, the precision of the fixed point

representation as defined above is

+ <2exponent

-0

(The interpretation of <2exponent is the maximum value which is stgLl less than 2exponent.)

The number line of representable values and their relationship to the accuracy of the

values to be represented is illustrated in Figure 7 for both floating point and fixed point

comparisons. For fixed point numbers the precision of representable values is defined to

be the accuracy of the values to be represented. This results in the property that values

which differ by less than their specified accuracy in floating point format can not be

guaranteed to be bit for bit congruent even in the defined fixed point format, but they can be

guaranteed to differ by no more than one unit. In the figure the floating point values a, b,

30

and c are within a single accuracy interval. After their conversion to the fixed point values
a', b', and c', the values are not bit for bit equivalent, though they are within one unit of

each other.

Floating Point Point

Figure 7. Heating Point Comparison vs. Fixed Point Comparison

A method is needed to ensure that values which differ by less than their specified

accuracy in floating point format are considered equivalent when converted to their fixed

point format. Such a method is to consider fixed point representations with equivalent

exponents and whose mantissas differ by one or less as equivalent values. This changes

the precision of the fixed point representation to

+ <2exponent

.2exponent

The corresponding number lines are shown in Figure 8. The values a', b', and c' are now

considered equivalent.

Floating Point Fixed Point

Figure & Floating Point Comparisons vs. Fixed Point Comparison Using the Precision
Voter

31

The above method guarantees that values whose floating point representations differ

by less than 2exp onent wiU be considered equivalent in their fixed point representations.

An additional property of the method is that values which differ by as much as

2exponent + 1 may also be considered equivalent. The exponent value should be chosen

such that 2expo nent corresponds to the accuracy interval specified for the version results.

For the autoland simulation the exponent value was chosen to be 3. This yields a nominal

precision of +/-6.25E-2. The specified accuracy was +/-5E-2.

One of the disadvantages of using the fixed point precision voter described above is

that the accuracy of the results must be specified as a power of two. The second

disadvantage is that values whose difference exceeds the specified accuracy may sometimes

be considered equivalent. This is true only for differences less than twice the specified

accuracy. If the above disadvantages are acceptable then use of the fixed point precision

voter should speed the operation of the difference function required in design diverse

implementations of fault tolerance.

4.1.2 Ordering and Placement

The precision voter returns a syndrome describing the relationship between the

results returned by the versions which have _n executed in this iteration. This operation

syndrome describes which set of results agreed within the specified accuracy, which set of

results disagreed within the specified accuracy, and which set of results was version

timeouts. Agreement requires that the set is composed of at least two members and that all

the members agree to within the specified accuracy; disagreement requires that none of the

members of disagreement set agree with any other member of the set or with the result

associated with an agreement set; a version timeout is a nuU result and indicates that due to

a version failure the version did not execute to completion prior to the expiration of the

timeout. This is distinct from an AP timeout which is the failure to respond due to an

attached processor failure. The mechanism used to distinguish between the two is
described in Section 4.2.

The operation syndrome is created by overlaying the equivalence interval

corresponding to the specified accuracy of the versions onto the ordered set of result

values. The placement of the equivalence interval should maximize the number of values

within the interval. In some cases this constraint.does not uniquely def'me the interval

placement. Such a case occurs when the upper two values could be considered to be in

agreement and the lower two values could be considered to be in agreement, or the middle

two values could be considered to be in agreement and the upper and lower values could be

considered to be in disagreement. This is shown in Figure 9. In such a case the latter

choice could be selected to suppress the occurrence of pairwise splits.

32

Figure9. abAgree/cdAgree or bcAgree/adDisagree

Another case where the maximization of the number of results in agreement does

not uniquely clef'me the placement of the equivalence interval is when either the upper three

or the lower three values could be considered in agreement and the remaining value in

disagreement. This is shown in Figure 10. In the current implementation the upper three

are chosen because of an arbitrary decision in the coding of the algorithm. In an enhanced

implementation the choice might depend upon which value had been previously verified to

be free from hardware faults. This would be applicable when the operation syndrome is re-

evaluated after an isolation iteration. If the above choice was between a verified and

unverified result as the disagreeing result, then choosing the verified result to be the

disagreeing value would suppress the need for another isolation iteration to verify the

otherwise unverified, disagreeing value. This would also suppress the number of

operation syndromes which are unverifiable due to exhaustion of the number of allowed

isolation iterations for each operational iteration.

Figure 10. abc Agree/d Disagrees or bcd Agree/a Disagrees

33

4.1.3 Hardware Implementation

It would be desirable to implement the precision voter in hardware instead of

software. This should increase the execution speed of this specialized and heavily used

function. One problem with implementing a floating point precision voter is that the

accuracy of each set of results to be voted must be known by the voter. This problem is

not present in the implementation of a fixed point precision voter as described above. In

the fixed point precision voter the relative precision of the fixed point mantissas is the

relevant quantity and it is fixed at one unit regardless of the absolute accuracy of the

corresponding results. The conversion from the floating point representation to the fixed

point representation performs this translation.

Implementation of the fixed point precision vote_ in hardware is more difficult than

the implementation of a bit for bit comparison. The precision voter must not only perform

data dependent operations on selected members of its input, it must also uniquely encode

the determined agreement relationship between the members of the input and return this

code and the members to the hardware/software isolation software. The feasibility of a

hardware implementation should be explored further if the performance of the fault tolerant

software implementation is a primary goal.

4.2 Hardware/Software Isolation

At the completion of an operational iteration of the versions, there is recorded a

result for each executed version. These results are analyzed by the precision voter and

summarized in an operation syndrome. Results which disagree with the majority or are

version timeouts may either be the result of an attached processor fault or a version fault.

Isolation of the fault is required to determine which component is responsible. If the

hardware is determined faulty then the it is masked from the system and the suspect result

is replaced by a result which has been verified to be free from hardware faults. If a verified

result disagrees with the majority then the associated version is faulty and it is recorded as

such.

The isolation and verification is accomplished by an isolation iteration. Successive

isolation iterations and a recursive reanalysis of the updated operation syndrome are

performed until all suspect results are verified or the maximum recursion level has been

reached. If all suspect results have been verified and a majority result is available then this

result is returned, otherwise a default value is returned. The algorithm used in the analysis

imposes several constraints on the behavior of software faults. These constraints must be

enforced for isolation to be valid. The algorithm and the associated constraints will be

discussed in the following sections.

34

4.2.1 Isolation Algorithm

The isolation algorithm must isolate the fault source for both disagreeing results and

timed out results. A timed out result occurs when an attached processor executing a

version does not return a result prior to the expiration of the timeout interval on the FTP.

The timeout could be caused by a failure of the attached processor or of the version. If it is

a failure of the version and it can be assumed that the fault has not propagated into the

attached processor executive, then the attached processor should stiU be capable of

responding to commands from the FTP. The FTP therefore sends a timeout command to

the attached processor and if it is acknowledged then a version time, out is assumed. If the

attached processor does not acknowledge then an AP timeout is assumed and the attached

processor is masked from the system. When an AP timeout is detected, the subsequent

actions of the system are as ff the attached processor had been previously masked and its

assigned version was not executed.

After a resultor aversiontimeouthas been recorded foreach executed version,the

precisionvoter determines the operationsyndrome. Ifthe syndrome indicatesthatthere

were not at leasttwo agreeing,non-time.outresultsthen isolationisnot attempted and the

defaultvalue isreturned. (The defaultvalue isthe value returnedin the lastiteration.)If

the syndrome indicates a pairwise split, then the disagreement is assumed to be caused by a

version fault and the confidence voter is called to resolve the split. Otherwise, those results

which disagreed or were version timeouts are treated as suspect and isolation is attempted

to determine the component responsible for the disagreement and to provide a verified

result.

A suspect result is associated with a particular set of inputs, a suspect version, and

a suspect attached processor. The isolation algorithm implemented consists of re-executing

the suspect version using the same set of inputs on all available attached processors in an

isolation iteration. If none of these attached processors are faulty then all results from the

isolation iteration should be bit for bit congruent and the results should also be bit for bit

congruent with the originalsuspect result. It is assumed that any disagreement indicates

that the attached processor responsible for that result is faulty and that attached processor is

accordingly recorded as such and masked from the system. The algorithm will detect

transient as well as hard faults which occur in any of the executing attached processors

during the isolation iteration. Because the algorithm_ compares the original result from the

suspect attached processor with the result from the same attached processor in the isolation

iteration, it will both detect and diagnose transient and hard failures in the suspect attached

processor.

After the isolation iteration the suspect result and the corresponding version state is

replaced by the majority result and version state from the isolation iteration. This result has

now been verified to be free from the effects of hardware faults and any disagreement with

35

otherversionresults is caused by a software fault in the version. No majority result in the

isolation iteration indicates multiple hardware failures and no recovery is attempted.

The operation syndrome is then updated based on the verified result and re-

evaluated. If there are remaining suspect, unverified results then the cause of each of these

is also isolated within the following constraints. Isolation is terminated when all suspect

results have been verified to be free from hardware faults; there is a pairwise split; there are

not two agreeing, non-timeout results; there are not sufficient attached processors for

isolation; or the number of allowed isolation iterations has been exhausted. In the former

two eases, if a majority result is present or the correct result can be determined by the

confidence voter, then the version error history is updated and this result is returned. If a

pairwise split cannot be resolved, then the error history is updated and a default value is

returned. In all other eases the error history is not updated and a default value is returned.

An enhanced implementation might return the majority value if it is available in the latter

three eases. The number of allowed isolation iterations for each operational iteration in the

AIRLAB FTPIAP fault tolerant software system is two. This allows isolation of all two

hardware faults, one hardware fault and one software fault, or two software fault

scenarios.

4.2.2 Software Faults

The above algorithm requires that a version fault does not propagate to its attached

processor executive or to the other co-resident versions. This requirement must be

enforced in the system implementation. If the requirement is enforced then the distinction

between AP timeouts and version timeouts is valid. It can then also be assumed that the

execution of identical software on identical hardware in the isolation iteration should yield

bit for bit identical results and therefore any disagreement indicates a hardware failure in the

associated hardware component. Enforcing this requirement requires some memory

management on the attached processor to protect the memory associated with the attached

processor executive and each of the versions. This is present on the VAX and could be

provided on a microprocessor by the use of a memory management unit. The instructions

executable by the versions must also be limited by either setting appropriate protections or

by ensuring that the versions are executed in user mode on a microprocessor. The stacks

used by each of the versions should also be distinct.

36

$.0 THE DECISION ALGORITHM

Recent research by Knight and Leveson indicatesthatone cannot assume that

software failuresarc independent, random events [8]. In fact,Eckhardt contends that

software failurerateisa functionof itsinputs[24]. This lack of independence severely

reduces the reliabilitygained by using majority vote N-version software. For example,

afterstudyingseveralthousand 3-versionsystems,Knight and Levcson concluded that,for

theirspecificapplication,the averagereliabilityof thesesystems increasedby only a factor

of 19 over the average reliabilityof a singleversion [28]. For the FTP-AP architecture,

therefore,a confidencevoterhas been developed thatcan provide a higherreliabilitythanis

possible with majority vote N-version software. The confidence voter does thisby

exploiting the correlated nature of software failures, as illustrated in Figure 5. In Figure 5

(which is not set to any scale), the area marked A is the subset of the input space where

version A fails, area B is where version B fails, and so forth for versions C and D. In the

input space where A's and B's failure regions overlap, every time B fails, A will fail as

well If A's and B's outputs were different, a simple majority or plurality voter can easily

choose the output of versions C and D as being the correct answer. (This situation is

known as a 2-1-1 split.) However, if the incorrect outputs of versions A and B were the

same, a simple majority voter would be at a loss to choose between the correct pair,

versions C and D, and the failed pair, versions A and B. (This situation is known as a 2-2

split.) The confidence voter takes advantage of the past history of these deterministic

software failures and dependencies to choose the correct answer when a 2-2 split occurs.

In using the deterministic nature of software failures, the confidence voter cannot

assume that the probability (A fails and B fails) equals the probability (A fails) times the

probability (B fails). In fact, using the latter figure implicitly assumes that the failures are

independent. Therefore, for a four version system the decision algorithm keeps a record of

the frequency of each pa/r failing together, whether or not they fail with identical answers.

The confidence voter makes the assumption that for double failures the probability that A

and B fail with identical answers is proportional to the probability that A and B fail with

non-identical answers.

This assumption allows the confidence voter to use 2-1-1 splits (that is iterations

where the two incorrect values are not identical) to gather information on the frequency of

each pair failing together and provides an a priori probability on which to decide a 2-2 split

(iterations where the two incorrect values are identical). If the a priori failure probability

for one pair is some threshoid larger than the a priori failure probability for the other pair,

then the more reliable pair is chosen. If the difference between the two pairs' failure

probabilities is not large enough, the confidence voter will fail-safe.

Publisheddatafi'omthe27 versionexperiment done by Knight and Lcvcson[8] was

used to analyze the distributionof double failures.A simple analysisof the pairwisc

37

failures was performed and each of the 17550 possible 4-version combinations were

divided into 5 categories :

1. Combinations with no double failures

2. Single pair produce all double failures

3. One pair produces >10 times more double failures than any other pair

4. One pair produces > 2 times more double failures than any other pair

5. One pair produces < 2 times more double failures than any other

Figure 11 shows the distribution of the 4-version combinations among the 5

different cases. A quarter of the combinations had no double failures (Case 1) and a third

had only one pair cause all the double failures (Case 2). The combinations with more than

an order of magnitude difference in the number of failures caused by each pair also account

for a large percentage (Case 3).

10.51%

16.93%

23.94%

no pairs

_i only one pair

Ill > 10 difference

> 2 difference

E] < 2 difference

15.53%

33.08%

Figure 11. Types of 4-Version Combinations

The following subsections describe the operations of the confidence voter, the

simulator that was used to test the confidence, and the results of the simulations.

38

5.1 The Confidence Voter

The actual operation of the confidence voter is fairly straight-forward. Each time a

pair of versions fail, the failure counter for that pair is incremented. If there is a fail-safe,

the counters for every pair axe incremented. This way, the counters work under a worst-

case assumption. When there is a 2-2 split, the confidence voter compares the failure rates

for the two pairs. If the failure rate for one pair is some threshold larger than the failure

rate of the other pair, then the more reliable pair is chosen. If the difference between the

two pairs' failure rates is not large enough, the confidence voter will fail-safe.

In operation, then, the confidence voter behaves exactly like the majority (or

"plurality") voter until it has gained enough knowledge to cross the threshold. This

learning curve varies with the size of the threshold, the proportion of failures that are

identical, and the difference in frequency of failures for the different pairs.

An important caveat is that there always must be some threshold. Without a

threshold, it is possible for the decision process to influence the earliest stages of the

learning process. This could push the confidence voter down the wrong path and ruin the

system's reliability. The threshold is the only parameter affecting the learning curve that

can be controlled and is based on the application. If in a given application, a fail-safe is

relatively harmless compared to a catastrophic failure, then the threshold should be set

high. This causes the confidence voter to be conservative and not decide a 2-2 split until it

has a large amount of evidence in favor of one pair. On the other hand, if a fail-safe is

almost as bad as a catastrophic failure, the a lower threshold should be set. A careful

analysis of the costs of a fail-safe versus the costs of a catastrophic failure needs to be done

for each application before any threshold can be substantiated.

5.2 The N-Version Simulator

The N-version simulator was created to test the operation of the confidence voter

algorithm. It does this by mimicking the operation (a_,d failure) of four versions of a

program. The simulator is divided into two sections, a failure generator and a result

generator. The failure generator determines which of the four versions will fail, and the

result generator assigns both correct and incorrect floating point numbers as each version's

results

Since there are four versions, and on each iteration each version can either fail or

not fail, there are 16 possible failure patterns. Each of the 16 failure patterns is assigned a

probability based on Knights's 27 version experiment [8]. The simulator starts an

"iteration" by randomly selecting a failure pattern. That failure pattern determines the result

for each version. If there are no failures, each version is given an identical floating point

number as a result. If one version has failed, the failed version is assigned a result that is

different from the other three. When two or more versions fail, the result generator decides

39

whether the failures are unique or identical, by using the parameter _, which is set to some

value. The probability that two failed versions have the same incorrect value is the

probability that versions choose the popular incorrect answer (this probability is _ 2). If

either version (or both) choose an unpopular incorrect answer, then the two results will be

different (this probability is 1 - x 2). After everything is computed, four floating point

results, one from each version, are supplied to the confidence voter.

5.3 TheSindation Results

To compare the performance of the confidence voter against that of the majority (or

"plurality") voter, one combination of the four versions was randomly picked from each of

the four types of combinations that experienced double failures. Each of these cases was

run through a million simulated iterations two times. For the fast million iterations _ was

equal to 0.5, for the second million _ was equal to 0.7.

Figure 12 shows the pattern of failures used for the first simulations. The numbers

above each column refer to the version number assigned by Knight [8]. The X's indicate

the vez'sion is failed for the given failure pattern and the numbers in the first column refer to

the number of times each failure pattern should occur during a million iterations. Each of

these first two combinations has only one pair of versions that create all the double failures.

During these simulations there were no catastrophic failures since there were no

three or four multiple failures and the conf'zlence voter never made a bad decision. Figure

13 shows the number of fail-safes that occurred during the fast two simulations for both

case 2a (versions 2,9,11,23) and case 2b (versions 2,9,11,8). The numbers is parenthesis

after the case refers to the value of x for that simulation (either 0.5 or 0.7). In all

simulations, the confidence voter shows an obvious improvement over the majority voter.

The confidence voter also changes with time. When the confidence voter crosses its

threshold and has enough information to choose one pair in a 2-2 split, it no longer has fail-
safes.

The second two simulations had several pairs of versions that cause double failures,

but one pair of versions was responsible for many more of the double failures than any

other pair. The chosen case 3 combination, which must have at least a factor of 10

difference between the number of double failures,.used version 1,14,19, and 20. There

was a factor of 33 difference. The chosen case 4 combination, which must have at least a

factor of 2 difference between the number of double failures, used versions 16,19,25, and

26. For this combination there was a factor of 4 difference. During these simulations,

there was only one catastrophic failure which was due to the one triple failure in the pattern

of failures for case 3. Figure 14 shows the number of fails safes that occurred during

simulation for the case 3 and the case 4 combinations. In both of these cases, the

confidence voter stir shows an improvement over the majority voter. The last simulation

had a number of catastrophic failures and fail-safes. The chosen case 5 combination

4O

Combination Used for the 1st Cam 2 Simulation

0

53

545

71

0

0
0
0

0
9

0
0
0

)99322

Combination Used for the 2rid Case 2 Simulation

11 ! _ ? o

o
X _3 X

X _49

i

X o _..--_ X
X ""_"-

X o __ __

-.- --.. X 0
X X _g

i

_ _" X 0 ""-"_ _ _"
-lz,.._ i_'_ _ X 0

XXX i 0
L

x xx _n _X
999075

11 R

ii

X
X

x
X

X

xx

X

X:X

X_X

Figure 12. Combinations with Only One "Bad" Pair

0

s_

¢D

2O

10'

II

¢YJ

t tm

2a (0.5) 2a (0.7) 2b (0.5) 2b (0.7)

[-] safe (maj)
Im safe (conf)

Case

Figure 13. Results of the First Simulations

41

included versions 16,21,22, and 25. This combination had a small difference (a factor of

1.5), and had double failures from three different pairs. Because the confidence voter

never crossed its threshold, it behaved exactly the same as the majority voter and the results

were the same.

The results of these simulations show that the confidence can improve a 4-version

system's reliability. In fact if the data that was used is indicative of multiple software in

general, then we can expect that the confidence voter will improve the reliability in a large

number of cases. Furthermore, if the assumption that the number of 2-1-1 splits a pair of

versions has indicates how many 2-2 splits to expect, then the confidence voter will not

decrease the reliability of the system.

|

m

.?
car)

2o

10

3 (0.5) 3 (0.7) 4 (0.5) 4 (0.7)

Case

E] safe (maj)

[] safe (conf)

Figure 14. Results of the Second Two Sinmlations

42

6.0 EXPERIMENTS

Operationof the FTP/AP N-Version Fault Tolerant Software system is composed

of several functions. These functions include the transfer of data and commands between

the host, FTP, and attached processors; and the response of the host, FTP, and attached

processors to the transferred data and commands. Verification of the operation of these

functions over the range of all input conditions, and measurement of the performance of

these areas to determine the bottle necks in the system arc the desired goals of the

experiments performed.

Many of the functions described have very restricted modes of operation and their

correct implementation is sufficiently demonstrated during system execution of the autoland

simulation. These functions include the data, state, and command transfer between the

system elements; the generation of commands on the host; and the response of the attached

processors to commands. The response of the FTP to the results returned by the attached

processors has a greater range of possibilities than can be demonstrated in normal

operation. A comprehensive test of the handling of the possible fault isolation scenarios

which compose this response is required to verify the implementation. System operation is

described in Section 6.1 and the verification of the fault isolation implementation is

described in Section 6.2.

The comprehensive test described in Section 6.2 uses a specially constructed

program executing on the attached processors to create the faults observed by the FTP.

This method of verification has the inherent problem of generating only the fault behavior

which is expected and for which handling capabilities were implemented. An alternative

method of random fault insertion is described in Section 6.3 to test the hardware/software

isolation algorithm.

Performance measurements of the areas of functionality described above are

necessary to evaluate the capability of the system for real time execution of flight control.

These measurements are described in Section 6.4.

6.1 System Operation

The F'I__/AP N-Version Fault Tolerant Software system executes an autoland

simulation. The yawdamper function of the simulation was selected for implementation as

N-version fault tolerant software. Four versions of the yawdamper function were used: the

original FORTRAN implementation in the simulation; a second FORTRAN

implementation; a C implementation; and an ADA implementation generated by CASE, a

computer aided software engineering tool.

Execution of the simulation is controlled by a host VAX through subroutines

embedded within the simulation code. When execution of the yawdamper function is

43

required, the host writes a run_yawdamp command and the parameters of the function to

the host/ZIP dual ported memory. When the FTP receivesthiscommand itassignsthe

available versions of the yawdamper function to the available attached processors, writes a

run_yawdamp command, the yawdarnper input, and any state variables required by the

versionsto theFI'P/attachcdprocessordualportedmemory.

Each of the attachedprocessors has residentan executiveprocess and a process

corresponding toeach of theversions.These versionprocessesare suspended waitingfor

an event flagto triggerexecution of theirversion of the yawdamper function. When the

run..yawdamp command isreceived by the attachedprocessorexecutive,itreads itsdual

ported memory, determines the versionthatithas been directedto execute, and setsthe

appropriateevent flag. This version then begins execution. When itis complete the

version process writesitsresultsand the updated statevariableto dual ported memory,

setsa versionfinishedevent flag,and waitsforthe nexteventflagthattriggersexecutionof

itsversion. The executive responds to the version finished event flag by writing a

command_complete response todual ported memory and returningto a statewhich will

allow ittorespond tothe nextmn_.yawdamp command.

At the completion of an operational iteration the FTP has a result from each active

attached processor. It groups this set of results into subsets which agree, disagree, are

version time-outs, or are AP time-outs. If there is a pair-wise split of non-time-out results,

then no isolation is attempted. If the confidence voter does not have enough information to

choose the "correct" value from the split, then the fail-safe value is returned. In this

implementation the fail-safe value is the value from the last iteration. Likewise, if less than

two results agree with each other, then no isolation is attempted and the fail-safe value is

returned. Otherwise, a maximum of two isolation iterations are executed to isolate the

origin of disagreeing results (including version time-outs). At the completion of the

isolationiterationsifa majorityconsensus existsand alldisagreements have been isolated,

or a "correct"value from a pair-wisesplitexiststhen thisvalue isreturned,otherwisethe

fail-safevalue isreturned.

Isolationis accomplished by running the version associatedwith the resultin

question on allavailableattachedprocessorsin an isolationiteration.In the absence of a

hardware fault, all results should agree in the isolation iteration and agree with the suspect

result from the_original iteration. Those attached processors responsible for results which

disagree are recorded as failed. The majority result from the isolation iteration replaces the

suspect result in the original iteration. The evaluation of the results is then repeated and an

additional isolation iteration may be performed to isolate remaining disagreements. If all

disagreements have not been resolved after two isolation iterations, then the fail-safe value
is returned.

0

After successfulisolation,alldisagreeingresultsdue to faultyattachedprocessors

have been discarded. Any remaining disagreements must be the resultof versionfailures

44

and are logged and resolved by the confidence voter. This value is then returned to the

host. It continues operation until the next call of the yawdamper function and then the

process is repeated.

6.2 Verification ofFTP/AP FTSW Fault Isolation Algorithm

6.2.1 Objective

The response of the FTP to data returned by the attached processors is composed of

isolating the cause of any result disagreements and resolving a single value for the result.

The cause of the disagreement is isolated to either a precision origin (by the precision

voter), or a hardware or software origin (by hardware/software isolation). If the cause of

the disagreement is the result precision, then the disagreement is handled by considering

the results equivalent. If the cause is a hardware failure, then the offending hardware is

removed from the system. If the cause is a software version failure, then the error is

logged and used as a basis for further judgments on the validity of the results from that

version. The result disagreements caused by component failures are then masked or

replaced, valid state for the associated version is restored if available, and a resolved result

is returned if available and all disagreements have been isolated. The previous resolved

value is returned otherwise. The above functions are described as the precision voter,

hardware/softwareisolation,and theconfidencevoter.The implementationof theprecision

voterand aspectsof hardware/softwareisolationwillbe verifiedinthisexperiment.

6.2.2 Experiment Operation

Correct results from executed versions are only constrained to agree within the

accuracy described in their common specification. A precision vote of the set of results

from an operational iteration and of the updated set after each isolation iteration is necessary

to determine if the results do agree within the specified accuracy. The vote implemented

consists of converting the result representation to a fixed point representation with known

precision and considering results in this representation which disagree by one or less to be

equivalent.

The setof numeric resultstobe precisionvoted can be representedas a singleresult

representedby_'a'and a subsetof one or more resultsrepresented by 'b'.Let the result

represented by 'a' equal 'a'and the resultsrepresentedby 'b'each equal 'b'or 'b'-Ias

discussed above. The followingrelationshipsbetween the resultsrepresentedby 'a'and

'b'are then possible.

45

condition: state:

a+2<=b result represented by 'a' is not equal to results

represented by 'b'

a+l=b

or a= b

result represented by 'a' is equal to results

represented by 'b'

a-l=b result represented by 'a' is equal to results represented

by 'b' if all results represented by qY equal 'b'

a-2>=b result represented by 'a' is not equal to results

represented by q_'

Given a result 'w', a test of the handling of each of the above states for two results

requires varying the range of a second result 'x' from 'w'-2 to 'w'+2. Likewise, a test of

the handling of each of the above states for four results, 'w', 'x', 'y', and 'z', requires that

w is fixed

x varies from w-2 to w+2

y varies from x-2 to x+2

z varies from y-2 to y+2

The fhst set of values from the above would correspond to 'w', 'w'-2, 'w'-4, 'w'-6. A

series of 124 sets of values would follow. This series of sets includes all the permutations

of the agreement and disagreement states between the members of a set.

All the permutations can be achieved in a smaller series of sets if the ordering of

members of the set is not relevant. In the FTP/AP FTSW system the ordering of results

from an operational iteration is not fixed relative to any physical attribute of the system and

the above condition is true. The smaller series of sets of 'w', 'x', 'y', 'z' can be generated

with the following.

w is fixed

x varies_from w to w+2

y varies from x to x+2

z varies from y to y+2

In addition to numeric results, version and AP time-outs are also possible. These

possibilities are included by allowing the results 'w', 'x', 'y', and 'z' to vary throughout

their numeric range and also through values interpreted as an AP time-out and a version

time -out.

46

After being evaluated by the precision voter, the set of results is grouped into those

members who agree, those which disagree, those which had a version time-out, and any

remaining. A disagreement or version time-out may have either a hardware or software

origin. The origin is isolated by running the suspect version on all available attached

processors in an isolation iteration with the same state as in the original iteration. In the

absence of a hardware failure all results from the isolation iteration should be identical.

APs which disagree in an isolation iteration have had a hardware failure and are recorded as

failed. The majority value from the isolation iteration is then used as the result value for

this version and the result is recorded as conf'trmed. Any other non-confirmed

disagreements or version time-outs are then isolated in at most one more isolation iteration.

Each set of the series described in conjunction with the precision voter corresponds

to the results from an operational iteration. Each operational iteration may have two

additional isolation iterations. After execution of each of these isolation iterations the set of

results corresponding to the operational iteration is updated and reevaluated. It is desirable

to test all permutations of the agreement and disagreement states for these subsequent

isolation iterations. The ordering of the members of the set is now fixed and the values

returned by isolation iterations must vary throughout the entire range of (least value - 2) to

(largest value + 2), version time-out, and AP time-out to test the entire set of permutations.

The above set of tests will verify the isolation of software faults and those transient

hardware faults which manifest themselves as a disagreement between the result from a

processor/version pair in the operational iteration and the result from the same pair in an

isolation iteration. In this experiment, isolation of hardware faults which manifest

themselves as a disagreement between the results returned in an isolation iteration is not

verified.An additionalexperiment toverifythisimplementationcould be performed.

In the experiment the host only sends run_yawdamp commands and records the

returned result. It does not execute the autoland simulation. The FTP performs as before

with minor modification. In order to evaluate the complete series of result sets without

resetting the system after every error, it was necessary to suppress the exclusion of faulty

components from the system. The determination that components are faulty are logged, but

they are removed from the system. These error and information messages are logged on an

attached printer and used to verify the successful execution of the precision voter, and FFS

isolation. These messages make the FTP log quite v.erbose; it may be desirable to suppress

some of these messages during normal operation. Additionally, a location in FTP/AP dual

ported memory to record the isolation recursion level is necessary as detailed below.

The attached processors have resident the executive task and a test task. The

executive task is modified to always set the event flag triggering the test task when it

receives a run_yawdamp command. The test task is the same on all attached processors. It

generates the series of sets of values described above. Each set has six members; one for

each version and one for each possible isolation iteration. When it is triggered by the event

47

flagitwritesthe setof valuesfor thisiterationto a fileand returnsone of the members of

the set as itsresult.The member depends on whether thisiterationisfor isolationand

which versiontheattachedprocessorwas directedtoexecute. Iftheresultisnot a time-out

the testtask then setsthe version finishedevent flag. The next set in the seriesisthen

determined and the testtaskwaitsforthe next event flagtrigger.Ifthe attachedprocessor

executiveseestheversionfinishedevent flagitreturnsthecommand_completed response

to the FTP. Otherwise itwillreceivea timeout_command from the FTP. Ifthe testtask

resultwas a version_time.outthen theexecutivereturnsa command_complete response. If

the result was an ap_timeout then the executive returns no response. In either case the FTP

then waits for the next run_yawdamp command from the host.

The dam used to evaluatethe successof theexperiment are the attachedprocessor

and hostdam files,and theFrP errorlog. Their entriesarecorrelatedby iterationnumber

and isolationlevel.For a given setof valuesrcunned by the attachedprocessorsa known

setof actionsshould occur on the FTP and a known resultshould be returnedto the host.

This informationisused toconfirm the successfulcompletion of theexperiment.

6.2.3 Summary of Results

The complete set of isolation scenarios consists of 1330 operational iterations and

the associated isolation iterations. Due to the manner in which attached processor and

version time-outs were synthesized for the experiment, the system was not tolerant of

competing processes on the VAX. This and other VAX problems necessitated parsing of

the set into manageable subsets. Execution of the experiment also revealed several faults in

the isolation code. These were corrected and the corrections verified. Successful execution

of the complete setof isolationscenarioswith the correctedcode took approximately 11

hours of system time.

The output used to confirm the successfulevaluation of the isolationscenarios

consistedof the attached processor log,the FTP log,and the host log. Confirmation

required correlating the log entries and verifying that the entries were appropriate. The

correlation and verification of the log entries was done manually. An annotated version of

the output used to confirm the successful evaluation of illustrative basic isolation scenarios

isincludedbelow.

The output from an attached processor is interspersed with the output from the FTP

message log and the host log. The attached processor output lists the recursion level of the

iteration, the value returned by each attached processor for that iteration, and for isolation

iterationsitalsoincludesthe versionbeing executed and the updated values used to form

the operationsyndrome. A recursionlevel(RL) of zero corresponds to the operational

iteration;a value of one corresponds to the firstisolationiteration;and a value of two

corresponds to the second and finalisolationiteration.The operationalvalues (OpVal)

correspond to the values forversion I,2, 3,and 4 respectivelyand are used to form the

48

operation syndrome. In the operation iteration (RL: O) these also correspond to the values

returned by attached processor A, B, C, and D. The isolation values (IsVal) correspond to

the values returned by attached processor A, B, C, and D after their execution of an

isolation iteration of the version specified.

The output of the FTP message log is the sequence of messages corresponding to

each of the selected operational iterations and its associated isolation iterations. It consists

of an attached processor to version assignment such as AB->12. This indicates that

attached processor A is executing version 1 and attached processor B is executing version 2

in the operational iteration. The corresponding operation syndrome is listed in the form

a12_d3_v. This example indicates that the results from versions 1 and 2 agree, the result

from version 3 disagrees with that result, there were no version time-outs, and version 4

was not executed or its associated attached processor experienced an AP time-out. The

isolation syndrome has the same format with the versions replaced by attached processors

which are executing a specified version. The updated operation syndrome is listed after

each isolation iteration and the value returned to the host is listed when the isolation is

complete.

The output of the host log is the result returned for use by the host in that

operational iteration.

Example 1: Allresults agree.

AP:

RL: 0 OpVal: 50 50 50 50

EXP-

AP to version assign, ABCD->1234

Operation syndrome, a1234_d_v

Result from version 1 returned

host:

Rslt: 50

49

Example 2: Disagreement due to precision.

AP:

RL: 0 OpVal:

FTP:

AP toversionassgn,ABCD->I234

Operation syndrome, a1234_d_v

Resultfrom version Irvturned

HOST:

Rslt: 50

5O 5O 5O 51

Example 3: Disagreement due to software fault.

AP:

RL: 0 OpVal:

RL: 1 Ver: 4 IsVal: 52

OpVal:

FTP:

AP to version assgn, ABCD->1234

Operation syndrome, a231 d4 v

HW/SW isolation of Ver 4, AP D

Isolation syndrome, aABCD d v

Operation syndrome a231_d4_v

Software fault in version 4

Result from version 2 rena'ned

HOST:

Rslt: 50

50

52

50

50

52

50

50

52

50

52

52

5O

Example4: Disagreementdue to transient hardware fault.

AP"

RL: 0 OpVal: 50

RL: 1 Vet:. 4 IsVal: 50 50

OpVal: 50

50

50

50

FTP'.

AP to version assgn, ABC'D->1234

Operation syndrome, a231_d4_v

HW/SW isolation of Vet" 4, AP D

Isolation syndrome, aABCD_d_v

Transient fault in AP D

AP D taken off-line

Operation syndrome a2314_d__v

Result from version 2 returned

HOST:

Rslt: 50

Example 5: Disagreement due to version time-out software faulL

AP"

RL: 0 OpVal: 50 50

RL: 1 Ver: 4 IsVal: 0 0 0

OpVal: 50 50

FTP-

AP to version assgn, ABCD->1234

Version time-out from version 4

Operation syndrome, a23 l_d_v4

HW/SW isolation of Ver 4, AP D

Version time-out from version 4

Isolation syndrome, a_d_vABCD

Operation syndrome a231_d_v4

Software fault in version 4

Result from version 2 returned

HOST:

Rslt: 50

50

5O

50

50

0

50

52

5O

0

0

51

Example 6: Dete_tion of an AP time-out.

AP:

RL: 0 Val: 50 50 50 -1

FTP:

AP to version assgn, ABCD->1234

AP Time-out from AP D

AP D taken off-line

Operation syndrome, a23 l_d_v

Result from version 2 returned

HOST:

Rslt: 50

In addition to confn'ming the expected execution of the basic isolation scenarios, the

experiment revealed interesting behavior for some of the more complicated scenarios.

These scenarios involve the occurrence of more than two errors in an operational iteration

and the associated isolation iterations. This should be a rare occurrence, but the algorithm
could be altered if it was determined desirable.

The first characteristic is illustrated by the following example.

52

Example7: Valid result or fall-safe?

AP:

RL: 0

RE: 1 Vex':. I

RL: 2 Ver: 4

OpVal:

IsVal: 52

OpVal:

IsVal: 51

OpVal:

50

52

52

51

52

52

52

52

51

52

53

52

53

51

53

55

55

51

FTP:

AP to version assgn, ABCD->1234

Operation syndrome, a23_d14_v

HW/SW isolation of Ver 1, AP A

Isolation syndrome, aABCD_d_v

Transient fault in AP A

AP A taken off-line

Operation syndrome, a123_d4_v

HW/SW isolation of Ver 4, AP D

Isolation syndrome, aABCD._d_v

Transient fault in AP D

AP D taken off-line

Operation syndrome, a412_d3__v

Bad rsks after isol,fail-safe

HOST:

Rslt: 50

Due to the syndrome algorithm not taking into account which values had already been

conftrmed this scenario resulted in a fail-safe. This is because the disagreeing result from

version 3 was not confn'med in either of the two isolation iterations. Alternatively versions

1,2, and 3 could have been considered to agree, then the disagreeing result from version 4

would have already been confirmed and a valid result would have been returned.

The example also illustrates the second characteristic. In the example a majority

result is present, the result is not returned because the isolation disagreeing results has not

been completed. Instead the value from the last iteration is returned and the error history is

not updated. Alternatively, it may be desirable to return the majority result and to not

update the error history corresponding the version with the unconfirmed, disagreeing

result. This would reduce the number of failsafes. (The number of isolation iterations

could also be increased, but this has performance penalties.)

53

6.7..4 Conclusions

The above experiment demonstrated that the hardware/software isolation has been

implemented as described with respect to software faults and with respect to transient

hardware faults which manifest themselves as disagreements between the result from an

AP/version pair in the operational iteration and the same pair in an isolation iteration.

Isolation of hardware faults that manifest themselves as disagreements between AP/version

pairs in the isolation iteration were not verified. Experimental verification of this aspect of

the algorithm could be done using the same system configuration. The experiment also did

not verify the isolation algorithm implementation when operating with less than four usable

attached processors. The experiment could be re-executed under these conditions to

provide verification.

The handling of isolation scenarios involving three or more faults could be

enhanced to minimize the occurrence of failsafes. This must be weighed against the

assumed rarity of such scenarios versus the overhead which the enhancements would

impose upon every isolation scenario. The desirability of such enhancements should be

evaluated before implementation is attempted.

Fault Injection Experiment

6.3.1 Objective

The purpose of this experiment is to demonstrate that the hardware/software

isolation algorithm can correctly identify the source of a failure as either hardware or

software. Our goal is to simulate a hardware failure by means of a fault injector on a

single AP, determine that the fault was identified as hardware rather than software, and that

the system continues to function correctly in the presence of the fault. The VIP's error log

and stares screen is displayed on a local VT100 terminal. This display identifies the fault

as a permanent hardware fault, a transient hardware fault or a software fault. If the fault is

identified as a hardware fault, the faulty AP is logged as being taken off-line along with the

reason it is taken off-line. This log should demonstrate that the isolation algorithm can

correctlyidentifya hardware fault.No experiment was run todemonstratethattheisolation

algorithmwillcorrectlyidentifya transienthardware fault,but the faultinjectorsoftware

could be easily modified to run such an experiment.._

6.3.2 Description

The fault injector is implemented with a software module which runs

simultaneously with the programs on the host, the ZIP, and the APs. This FORTRAN

program injects errors by continually changing the AP's dual ported memory. Changing

thememory of a particularAP simulatesa dualportedmemory faultin thechosen AP. The

AP chosen to host the faultinjectorwas the AP thatwas associatedwith the channel

54

running version 3 of the yaw damper (System 6). The AP running version 3 was chosen

since version 3 was the only version that had a known software fault. Version 3 was

identified as having a software fault in all previous runs of the autoland simulation. In all

previous runs no AP hardware fault was injected or identified.

This experiment requires all four APs to be active, the FTP error display to be

shown, and a VT100 terminal connected to the AP which runs the fault injector program.

Running this experiment is similar to running the demonstration of the fault tolerant

software described in Section 6.1. It requires no changes in the FTP load module and no

changes in the software which is run on the APs. The fault injector program was started up

after a few iterations of the autoland simulation, in order to verify that all APs did come on-

line.

6.3.3 Results

This experiment was conducted for several runs of the autoland simulation. In each

run of the experiment, the fault injector program was started after several iterations of the

simulation. Before the fault injector was started, the four APs were confirmed to be fault

free and on-line, and the results of the simulation were confimaed to be correct. The output

from the display programs running in the FTP and the host was the means of confirming

that the system was running fault free. Once the fault injector was started the FTP error

screen displayed that an isolation iteration was executed. After the isolation iteration, the

error screen displayed that a hardware fault had been identified and isolated to the AP on

channel C. The error log then displayed that the AP attached to channel C was taken off-

line, and version 3 (which was previously assigned to channel C's AP) was assigned to

channel D's AP. Channel D's AP, however, did accumulate a number of software errors

after version 3 had been assigned to it. The autoland simulation was rerun without the

hardware fault injector and version 3 (running on channel C's AP) was observed

accumulating software errors.

This experiment demonstrated that the isolation algorithm can identify the source of

an AP's failure as either the hardware or the software resource.

The FTP's error screen was very helpful in verifying the FTP's ability to isolate the

source of a failure. The following is a scenario of the messages which appeared on the

FTP's error screen before, during, and after the execution of the hardware fault injector

program:

AP to version assign, ABCD -> 1234

Operation syndrome, a124_d3_v

HW/SW isolation of Ver 3, AP C

Isolation syndrome aABD_dC_v

55

Hardware fault in AP C

AP C taken off-line

Operation syndrome a1234_d_v

Result from version I returned

Figure 15, a diagram of the ZiP stares screen, shows the status of the processors,

clocks, and APs while the 737 autoland simulation is running without the hardware fault

injector. The status of the APs, before the 737 autoland simulation is run, is failed. As

figure 15 indicates, the status of all the APs has been changed to on-line.

LRC232R FAULT TOLERANT PROCESSOR 10:38:54
07/22/87

Processor

On-line

Channel A Channel C

Clocks AP Clocks

On-line On-line On-line

Processor

On-line

I

Clocks

On-line

AP

On-line

AP

On-line

[_'ocessor

On-line

Channel D
I

Clocks

On-line

AP

On-line

Figure 15. ZIP Status Display Before Hardware Fault

Figure 16 is a diagram of the N-version software stares screen. It indicates which

version is running on the various APs, the status of the version, and the number of

software error_ per iteration of the yawdamper code. Also shown on the screen is the

number of errors per iteration between each version. It should be noted that version 3 was

the version which has intermittent software faults. This can be verified by its error count of

2.

56

LRC232R 10:38:54
07/22/87

N-VERSION STATUS DISPLAY

I

VERSION 1 VERSION 3

STATUS: Active] 0/59 [STATUS: Active
AP: A AP: C
ERR/ITER: 0/59 ERR/ITER: 2/59

0/591 0/59 I

VERSION 2 9 VERSION4
I I

STATUS: Active STATUS: Active
AP: B AP: D
ERR/tIER: 0/59 ERR/ITER: 0/59

Figure 16. N-Version Status Display Before Hardware Fault

Figure 17 shows the failure of AP C while running the autoland simulation. The

failure occurred shortly after the fault injector program was started on channel C's AP.

Figure 18 indicates the new assignments of the versions to the APs after the

hardware fault injector was run. Although version 3 was running on the faulty AP, it still

remains active while being reassigned to AP D. Version 4, however, became idle with no

AP being associated with it. It should be noted that the error portion of the software errors

per iteration did not change because the som'cc of the error was isolated to hardware.

57

LRC232R FAULT TOLERANT PROCESSOR 10:40:37
07/22/87

iProcessor

On-line

]:_3¢essor

On-Line

_annel A Channel C
Clocks Clocks

On-line --._ On-line
On-line

I

Clocks

On-line

AP

On-line

13Tocessor

On-line

On-line

Charnel D

Clocks

On-line

AP
Failed at
10:40:12
07/22/87

AP

On-line

Figure 17. FTP Status Display After Hardware Fault

LRC232R 10:40:37
07/22/87

N-VERSION STATUS DISPLAY

VERSION 1 VERSION 3

STATUS: Active [0/93 [STATUS: Active

AP: A ! AP: DERR/HER: 0/93 ERR/HER: 2/93

0/93[3 0/871

VERSION 2 VERSION 4
I -- I

STATUS: Active STATUS: Idle
AP: B AP: Null
ERR/ITER: 0/93 ERR/H'ER: 0/87

Figure l& N-Version Status Display after Hardware Fault

58

6.4 Performanee Measurements

6.4.1 Objective

One of the goals of the architecture was to minimize the transport lag time between

the reading of the sensors and the output to the actuators. In many of the past N-version

experiments, the versions were run sequentially on one processor. This overhead problem

is solved by running the four versions of the application in parallel on the four attached

processors so that they take the same amount of time to run as a single version on a single

processor. Still, there is the added overhead for communication software, the confidence

voter, and the hardware/software isolation required for the CSDL unified hardware and

software fault tolerant architecture. The purpose of this experiment was to determine if the

architecture is able to meet the real time requirements of the autoland application.

6.4.2 Description

The system operation as described in Section 6.1 was used to gather timing

information from the FTP/AP N-Version Fault Tolerant Software System. The autoland

simulation runs on the host VAX and in normal operation it invokes the yawdamper

subroutine, also resident on the host VAX, as part of its operation. The setup that was

used in the timing measurements was as follows: the autoland simulation signaled the FTP

instead of invoking the resident subroutine and then waited for the result from the FTP

before completing an iteration. Since neither the host VAX nor the APs axe able to interrupt

the FTP, the FTP reads all its signals from the VAXs by polling locations in the dualported

memories. Polling for the signal from the host VAX is normally done every 40

milliseconds. If the FTP sees the signal to run the yawdamper, it writes the input data to

the dualported memory of the four attached processors and interrupts them. When each AP

finishes execution of a version, it writes its output and state variables in dualported memory

and signals the FTP. Again the FTP must poll the dualported memories of the four APs for

this signal. Figure 19 is a more detailed description of the control flow of the tasks or

processes within the processors (Host VAX, FTP and APs). It also shows the interaction

of these tasks. The places where the polling is done by the FTP is shown by the darkened

areas. This polling is normally done at 25 hertz. For the experiment, the polling was done

at four rates: 25 hertz, 33.33 hertz, 50 hertz and continuous. Timings were taken on the

host VAX, the-APs and the FTP. .-

Timings done on the host, which used the VAX clock, has accuracy to 10

milliseconds. Since the autoland simulation runs 3786 iterations of the control law, timings

were saved for each iteration and averaged to gain more accuracy Three timings were

made on the host. For a baseline, the time required to complete one iteration of the

autoland simulation under normal conditions was measured. Normal conditions means that

the yawdamper subroutine is resident on the host VAX and the FTP/AP N-Version Fault

Tolerant Software System is not active. Timing 2 measured the interval from

59

0

Ill

1.

1

I

I

i

:* ,_,

:I

O

io

I

E

, t,,,u

g r.r..'_ _i

II "_

i ."_

..(.......... _.__ _,_

i '>"

Figure 19. Control Flow of FTSW System

60 ORIGINAL PAGE IS
I_DOR QUALITY

the host signal to the ZIP until the FTP sent the yawdamper output back to the host.

Timing 3 measured the time required to complete one iteration of the autoland simulation

running the FTP/AP N-Version Fault Tolerant Software System. The polling for these

measurements with the FTP/AP system was done at 25 hertz, 50 hertz and continuous.

The APs' clocks were used for the timings done on the APs. They also have

accuracy to 10 milliseconds so the average of 3786 iterations was calculated to gain better

accuracy. For timing 4, the APs measured the period from when the signal was received to

execute their version to the time they wrote their response back to the FTP. In timing 5, the

APs measured the period required by the FTP to read the results. This was done by having

the FTP signal the APs when the result was read. The timing 5 measurement was taken

when the polling intervals were 25 hertz and 33.33 hertz.

Timing 6, done on the FTP, used the Langley Data Acquisition System (DAS) and

a logic analyzer. The FTP measured the interval from the time the FTP reads the input

from the host VAX until the time the FTP interrupts the host VAX with the output. This

measurement was taken when the polling interval was 25 hertz.

6.4.3 Summary of Results

Figure 20 is a summary of the results of the experiment. It indicates that polling for

results wastes approximately half the polling period.

Yalm Donebv Tam

1. Normal Autoland Host 35.8 msec"

2. Total YawDamper with FTP/AP FTSW System Host 25 Hz 88 msec

50 Hz 75 msec

continuous 46 msec

3. Total Autoland Simulation with FTP/AP FTSW Host 25 Hz

System 50 Hz

138 msec

125 msec

4. YawDamper Execution on APs APs 11 msec

5. FTP Read Result from APs -APs 25 l-Iz

33.33 Hz

18 msec

10.6 msec

6. YawDamper Execution, Communication SW,

HW/SW isolation and confidence voter

FTP 25 Hz 69.5 msec

Figure 20. Summary of Timing Results

* Measured independently under real-time conditions found to be 20 msec.

61

6.4.4 Conclusions

The fact that a VAX to FTP interrupt was not implemented in the FTP/AP system

causes a severe performance penalty. If the system is run in the continuous mode, the

timing for the total yawdamper is 46 milliseconds and the total autoland simulation is 82

milliseconds. In order to meet the real time requirements of an application, this interrupt

must be implemented. The overhead required for the other software in the system is equal

to the total yawdamper time minus the time for the execution of the yawdamper routines on

the APs, that is 46 - 11 or 35 miUiseconds. The entire normal yawdamper autoland

simulation takes 35.8 milliseconds. So if the Autoland Simulation was setup to run at 20

hertz or every 50 milliseconds, the VAX to FTP interrupt was implemented, and the

Autoland Simulation did not wait on the results from the FTP/AP FTSW system but sent

input foUowed by an immediate read for output, it would run in reai time. The Autoland

Simulation would be getting the results from the n-1 calculation so that the FTP/AP FTSW

would be running concurrently with Autoland Simulation.

The dhrystone benchmark was run in order to compare the AIPS FTP that is 68010

microprocessor based with an 8 megahertz clock and the CSDL IR&D VLSI FTP that is

68020 microprocessor based with a 16 megahertz clock. The VLSI IR&D FTP ran 7 times

faster. VAX to FTP interrupts have been implemented in this VLSI implementation of the

FI'P. Therefore, the 46 millisecond overhead for running on the FTP/AP FTSW

architecture would be greatly reduced with the 68020 implementation of the FTP/AP

architecture. Therefore, the FrP/AP FTSW architecture with a 68020 microprocessor and

a VAX to FTP interrupt would meet the necessary real time requirements of an autoland

application.

62

7.0 CONCLUSIONS

In the NASA sponsored study of a Unified Hardware and Software Fault Tolerant

Architecture, an FTP/AP system was implemented to execute N-version fault tolerant

software. The study proposed and implemented solutions to several of the basic problems

associated with N-version software. These problems are the resolution of results when the

agreement condition is not def'med as bit for bit congruence, the resolution of a pairwise

split in the results caused by the occurrence of coincident errors, and ensuring that

hardware faults are not interpreted as software faults. With the exception of the latter, these

are generic solutions to the described problems and are not dependent on the

implementation of an FTP/AP architecture.

The ability to C_Tecdy resolve a pairwise split in results based on the past behavior

of the versions has the potential to decrease the failure rate which would otherwise be

exhibited by several orders of magnitude. The proposed confidence voter maintains an

error history of the versions and uses this history to resolve a palrwise split based on the

relative confidence in the pairs. Execution of the confidence voter on input simulated

according to published data from the 27 version experiment performed by Knight and

Leveson demonstrated that system reliability could be increased by the use of the

confidence voter. The confidence voter was never shown to decrease the system reliability.

Further research should be conducted to determine the generality of these results and to

gain more familiarity with the behavior of the confidence voter.

In conjunction with the research on the confidence voter, a Markov model was

developed for software failures. The model is based upon the underlying mechanism

responsible for the occurrence of software failures. The validity of the model and the

ability of the requisite parameters to successfully quantify the behavior of software failures

requires more research into how multiple versions fail.

The AIRLAB FTP/AP system was designed toprovide the functionalityrequired

for highly reliable execution of N-version software. An FrP/AP system should also be

capable of real time execution of the N-version software while maintaining this level

reliability. The real time performance of such a system would be enhanced by an

architecture with an optimized communication mechanism between the FTP and attached

processors and a floating point coprocessor. The Advanced Information Processing

System FTP dual processor architecture could provide such a system. Communication

between the dual processors composing a channel of the AIPS FrP is optimized for speed

and one of the processors from each channel of the FTP could be used as the attached

processor.

The structureand algorithmsof the system software implemented on the AIRLAB

FTP/AP FTSW system should be directlyapplicabletoan AIPS FFP implementation. An

AIPS FTP executing N-version faulttolerantsoftwareshould alsobe functionalas a node

63

within the larger AIPS system. A proposed implementation would have the computation

processors of the node functioning as the asynchronous APs and the synchronous IO

processors performing their IOP function while also controlling the operation of the APs.

The AIPS FTP would also include a floating point coprocessor so that the control law

calculations would meet the performance requirements. It is also possible to execute N-

versions of an application in the core FTP itself without the attached processors and

resynchronize the redundant processors in the FTP after each iteration of the application.

This will reduce the number of processors from eight (needed for the FTP-AP architecture)

to four for this architecture. The overheads of synchronization after each iteration of the N-

version application need to be quantified to determine the viability of this architecture. The

applicability of implementing N-version fault tolerant software on the Core FTP, the AIPS

FTP, and other architectures such as the the Fault Tolerant Parallel Processor should be the

subject of future research.

Research into version recovery and the ability to implement multiple functions of an

application as N-version software are also necessary if N-version software is to become a

viablesolutiontotheproblem of softwarereliability.This and otherresearchon N-version

software could use the developed AIRLAB FTP/AP FTSW system as a tcstbedto further

this goal.

64

8.0 REFERENCI_

[1] A. L. Hopkins Jr., T. B. Smith HI, and J. H. Lala, "FTMP-A Highly Reliable Fault-

Tolerant Multiprocessor for Aircraft", Proceedings of the IEEE, Vol. 66, No. 10, October

1978.

[2] J. H. Wensley, et al., "SIFT: the Design and Analysis of a Fault-Tolerant Computer for

Aircraft Control", Proceedings of the IEEE, Vol. 66, No. 10, October 1978.

[3] J. H. Lala, L. S. Alger, R. J. Gauthier, and M. J. Dzwonczyk, "A Fault Tolerant

Processor To Meet Rigorous Failure Requirements", The 7th AIAA-IEEE Digital Avionics

System Conference, Fort Worth, Texas, October 1986.

[4] A. L. Hopkins Jr., J. H. Lala, and T. B. Smith HI, "The Evolution of Fault Tolerant

Computing at the Charles Stark Draper Laboratory, 1955-85", Dependable Computing and

Fault Tolerant Systems, Vol. I: The Evolution of Fault-Tolerant Computing, ISBN 0-387-

8194 l-x, pp. 121-140, Springer-Verlag, Wien, Austria, 1987.

[5] M. Lipow, "Prediction of Software Failures", The Journal of Systems and Software,

Vol. 1, pp 71-75, 1979.

[6] A. Avizienis,"Fault Tolerance and Fault Intolerance: Complementary Approaches to

Reliable Computing", Proceedings of 1975 International Conference on Reliable Software,

Los Angeles, California, April, 1975.

[7] W. R. Elmendorf, "Fault-Tolccant Programming", Digest of Papers FTCS-2: The 2nd

Annual International Symposium on Fault Tolerant Computing, Newton, Massachusetts,

June 1972.

[8] J. Knight, N. I.,¢veson, and L. St. Jean, "A Large Scale Experiment in N-Version

Programming", Digest of Papers FTCS-15: The 15th Annual International Conference on

Fault Tolerant Compun'ng, Ann Arbor, Michigan, June 1985.

[9] A. Avizienis and J. Kelly, "Fault Tolerance by Design Diversity: Concepts and

Experiments", IEEE Computer, August 1984.

[10] L. J. Yount, "Architectural Solutions to Safety Problems of Digital Flight Critical

Systems for Coral Transports", Proceedings of the 6th AIAA/IEEE Digital Avionics

Systems Conference, Baltimore, Maryland, December 1984.

[11] A. Hills, "A310 Slat and Flap Control System Management & Experience",

Proceedings of the 5th AIAA/IEEE Digital Avionics Systems Conference, Seattle,

Washington, November 1983.

[12] R. Troy and C. Baluteau, "Assessment of Software Quality for the Airbus A310

Automatic Pilot", Fault Tolerant Considerations and Methods for Guidance and Control

Systems, AGARDograph, No. 289, July 1987.

[13] D. A. MackaU and S. D. Ishmael, "Qualifications of the Flight Critical AFTI/F-16

Digital Flight Control System", The 21st Aerospace Sciences Meeting, AIAA-83-0063,

Reno, Nevada, January 1983.

[14] J. H. Lala, "A Byzantine Resilient Fault-Tolerant Computer for Nuclear Power Plant

Applications", Digest of Papers FTCS-16: The 16th Annual International Symposium on

Fault Tolerant Computing, Vienna, Austria, July 1986.

65

[15] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals Problem", ACM

Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

[16] M. Pcase, R. Shostak, and L. Lamport, "Reaching Agreement in the Presence of

Faults", Journal of the ACM, Vol. 27, No. 2, April 1980.

[17] D. Dolev, "The Byzantine Generals Strike Again", Journal Of Algorithms, Vol.3, pp.

14-30, January 1982.

18] L. S. Alger and J. H. Lala, "A Real Time Operating System for a Nuclear Power Plant

Computer", Proceedings of the IEEE Real-Time Systems Symposium, New Orleans,

Louisiana, December 1986.

[19] J. Kershaw, "VIPER", IEE Colloquium on VLSI Architectures, Digest 32, London,

England, March 1987.

[20] T.B. Smith, III, "Synchronous Fault Tolerant Flight Control Systems," AIAA

Computers in Aerospace Conference IH, San Diego, CA, October 1981.

[21] A. Avizienis,"The N-Version Approach To Fault Tolerant Software", IEEE

Transactions on Software Engineering, Vol. SE-11, No. 12, December 1985.

[22] L. Chen and A. Avizienis, "N-Version Programming: A Fault Tolerant Approach to

Reliability of Software Operation," Digest of Papers FTCS-8: The 8th Annual International

Conference on Fault Tolerant Computing, Toulouse, France, June 1978.

[23] J.P.J. Kelly, et al, "Multi-Version Software Development", in Proceedings IFAC

Workshop SAFECOMP'86, Sarlat, France: October 1986, pp. 43-49.

[24] D. Eckhardt Jr. and L Lee, "An Analysis of the Effects of Coincident Errors on Multi-

Version Software", The AIAA Computers in Aerospace V Conference, Long Beach,
California, October 1985.

[25] P. Ammann and J. Knight, "Data Diversity: An Approach To Software Fault

Tolerance", Digest of Papers FTCS-17: The 17th Annual International Symposium on

Fault Tolerant Computing, Pittsburg, Pennsylvania, July 1987.

[26] "Reliability Prediction of Electronic Equipment", MIL-HDBK-217D, Pages 5.1.14-1

to 5.1.14-7, Department of Defense, Washington, D.C. 20301.

[27] J. Knight and P. Ammann, "An Experimental Evaluation of Simple Methods for

Seeding Program Errors", IEEE Transactions on Reliability, Vol. SE-11, No. 12,
December 1985.

[28] J. Knight and N. Leveson, "An Empirical Study of Failure Probabilities in Multi-

Version Software", Digest of Papers FTCS-16: The 16th Annual International Symposium

on Fault Tolerant Computing, Vienna, Austria, June 1986.

[29] Siewiorck D.P., and Swarz R.S., "The Theory and Practice of Reliable System

Design", Page 18, Digital Press, 1982.

[30] Hills, A.D., and Mirza, N.A., "Fault Tolerant Avionics", Proceedings of the 8th

AIAA/IEEE Digital Avionics Systems Conference, San Jose, CA, October, 1988.

[31] Dzwonczyk, M.J., and Stone, H., "A Fault-Tolerant Avionics Suite For An Entry

Research Vehicle", Proceedings of the 8th AIAA/IEEE Digital Avionics Systems

Conference, San Jose, CA, October, 1988.

66

Report Documentation Page
N_O_i A_nau_.C$,.1nO
_e ,'_O'.',."_ra¢ O'_

1. Report No.

NASA CR-181759

4. Title and Sub.fie

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

Study of a Unified Hardware and Software Fault-Tolerant

Architecture

7. Authods)

Jaynarayan Lala, Linda Alger, Steven Friend,

Gregory Greeley, Stephen Sacco, and Stuart Adams

9. Performing Organization NameandAddress

The Charles Stark Draper Laboratory

555 Technology Square

Cambridge, Massachusetts 02139

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665-5225

January 1989

15. Supplementary Notes

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

506-46-21-05

11. Contract or Grant No.

NASI-18061

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

Langley Technical Monitor: Sally Johnson

Final Report

16.Abs_a_

A unified architectural concept, called the Fault Tolerant Processor Attached

Processor (FTP-AP), that can tolerate hardware as well as software faults is

proposed for applications requiring ultrareliable computation capability. An

emulation of the FTP-AP architecture, consisting of a breadboard Motorola 68010-

based quadruply redundant Fault Tolerant Processor, four VAX 750s as attached

processors, and four versions of a transport aircraft yaw damper control law, is

used as a testbed in the AIRLAB to examine a number of critical issues. Solutions

of several basic problems associated with N-Version software are proposed and

implemented on the testbed. This includes a confidence voter to resolve coincident

errors in N-Version software. A reliability model of N-Version software that is

based upon the recent understanding of software failure mechanism is also developed.

The basic FTP-AP architectural concept appears suitable for hosting N-Version

application software while at the same time tolerating hardware failures.

Architectural enhancements for greater efficiency, software reliability modeling,

and N-Version issues that merit further research are identified.

17. K_ Words(Sugg_t_ by Author(s))

Fault Tolerant Processor Confidence Voter

S/W Reliability Model Isolation Algori

Attached Processor

Ultrareliability

N-Version Software

19. Securi_ Classif.(ofthisreport)

Unclassified

18. D_tnbudonS=ternent

Unclassified - Unlimited

=hm
Subject Category 62

.SecuriW Oassif.(ofth page)

Unclassified

21. No. of pages

70

• 22. Price

tASA FORM 1626 OCT 86

